FACTORS INFLUENCING GRAIN YIELD
IN PEARL MILLET
PENNISETUM
glaucum (L.) R. Br.
by
ABALO WIDI TCHALA
B.S.
Université du Bénin Lomé Togo, 1974
M.S.
Université de Paris Sud,
Orsay France, 1977
A Dissertation Submitted ta the Graduate Faculty
of the University of Georgia ln Partial Fulfillment
of the
Requirements for the Degree
ATHENS, GEORGIA
1989

significant on tillering, total head seed weight and grain yield,
were not agronomically important.
The analysis of data from the plant breeding /genetic study
showed that mean heterosis was low
(
-11
to 8%)
for maturity,
head length and seed size in the material studied and that plot
mean
broad
sense
heritability
was
65%,
58%,
and
74%,
respectively,
for these traits.
The frequency distribution was
continuous for head length and seed size but varied for maturity.
Large
seed
was
dominant
over
small
seed.
The
direction
of
dominance varied for maturity and head length. Overdominance was
recorded for head length and seed size. The minmum gene number
controlling each trait as suggested by the study, was 1 or 2 loci
for seed size, at least 2 loci for head length, and 1 to 3 genes
for maturity.
INDEX WORDS: Pearl Millet,
Planting Date, Earliness,
Dwarfness, Density, Leaf Spot Diseases,
Head Length, Seed Size, Gene Number

FACTORS INFLUENCING GRAIN YIELD IN PEARL
MILLET PENNISETUM
glaucum (L.) R. Br.
by
ABALO WIDI TCHALA
B.S. Universite du Benin Lome Togo, 1974
M.S. Universite de Paris Sud,
Orsay France, 1977
A Dissertation Submitted to the Graduate Faculty
of the University of Georgia in Partial Fulfillment
of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
ATHENS, GEORGIA
1989

FACTORS INFLUENCING GRAIN YIELD IN PEARL
MILLET PENNISETUM
glaucum (L.) R. Br.
by
ABALO WIDI TCHALA
Approved :
Date
-=:-----,..;=r"---"-----'~:o-=~.,...._-:_____,_:__:_-Date9- 7-le;
an, Reading Committee
Approved :
~~L.~~J1.
Graduate Dean

D E DIe A T ION
To my sisters N'Djouko, M'Babidjeyou, and late Essodounam,
and my late brother Kpindjaw,
for their sending me to school
and for their financial supports through the years.
To my Parents Boukpezi and Laway-Bello for their carings.
To all my Teachers on the PATH.
i i i

A C K NOW LED GEM ENT S
I am sincerly thankful to the
Institute of International
Education (lIE),
for sponsoring my four years of
study in
the US and for their understanding and help with my specific
problems. Special thanks to the menbers of the lIE Office in
Atlanta
for
their
friendship
Dr.
Julia
Tidwell,
James
Gregory,
Richard
Price,
Eva
Collymore,
Susan
Meyers,
and
Demetrice Watkins.
My sincere
appreciation goes
to Dr.
Wayne W.
Hanna,
my
Major Professor, for
providing me with research materials,
facilities,
and guidance in conducting my research work and
for
his
kindly
helping
me
through
different
problems
in
Tifton. My sincere thanks also go to the other members of my
Committee:
Dr. Joseph H.
Bouton, Dr.
Ronny R.
Duncan,
Dr.
Forrest W. Nutter, and Dr. Malcolm E. Sumner, and Dr. David
Radcliffe, for their help, guidance, and specially for their
useful and practical questions
during. my written and oral
examinations.
Special thanks to Dr. Joseph Bouton for his kind help with
my school work , and for the use of his lab and equipment to
count my seeds; to Dr.
Nicholas S.
Hill for his friendship
and the use of his lab and scale to weigh my
seeds; and to Dr. Roger H. Boerma for
helping me understand
my research work.
I express my sincere thanks to my Employer, 11 l'Universite
du Benin, LOME, Togo", for the permission to leave and for
keeping my job for me.
Many thanks
also
to
Jackie
Cotton at
the
United
States
iv

v
Information Agency,
(USIA),
for her
help and
friendship.
Without her visit to Togo and her kind understanding of our
needs there, I probably wouldn1t have been in the US as early
as 1984.
Many other people helped me in different ways and I would
like to sincerly say a very big thank you to all of them :
- Dr. Glenn W. Burton, for his friendship and his guidance;
his
crew
members;
Dr.
Michael
Dujardin
and
his
family,
Waldene Barnhill, Freddie Cheek, Jackie Merriman, and Curtis
Richard,
for
their
frienship,
all
at
the
Coastal
Plain
Experiment Station in Tifton, Georgia (GA);
- Mrs.
Barbara Hanna and her family in Chula , GA, for the
wonderful meals, gifts, and their friendship;
- Dr. Wayne W. Hanna, Dr. Khorsand Bondary, Randy Braswell,
and Jackie Merrimaw all
in Tifton,
Dr.
Glenn Ware,
Nancy
Barbour,
and
the members
of the
University Computing help
Desk in Athens, for their various help in analysing my data;
-
Dr.
Harold
H.
Brown
for
his
wise
advice
and
for
his
granting me with an account to run my SAS program in Athens;
- Dr. David Daman Wilson and his crew members for typing my
dissertation, Mrs. Polly C. Fields for her kind help with the
word processing, all the Staff in Agronomy Department and all
my
fellow
graduate
students
for
their
help,
support,
and
friendship,
in Athens.
To my young brother Lt.
Tchala E.
Anan and all
my other
relatives and friends,
I
sincerely say thank you for their

vi
loving cares to my little family during my long absence.
Finally, to my dear loving wife Amana Tchala Essosimna, our
dear
children
Padawenim,
Deou,
and
Koboyah,
my
nephews
Bikassam Petchetibadi and Pasim-Moyo, and my brother Abalika,
I would gratefully say thank you for their support through
letters, patience, understanding, confidence and hope during
these 54 months of my being abroad.

TABLE OF CONTENTS
Page
ACKNOWLEDGEMENTS
i i i
LIST OF TABLES
viii
LIST OF FIGURES
xii
I.
INTRODUCTION
1
I I. LITERATURE REVIEW
5
A) Introduction
5
B) Biology and morphology of pearl millet
6
C) Management/Genetic Study
7
D) Plant Breeding/Genetic Study
13
1 ) Introduction
13
2) Seed size
14
3) Earliness and plant improvement
19
4) Head length
20
Ill. MATERIALS AND METHODS
22
A) Management/Genetic Study
22
1) Materials
22
2) Methods
24
Method of Analysis
28
B) Plant Breeding/Genetic Study
28
1) Material
28
2) Methods
30
Method of Analysis
33
vii

viii
Page
IV.
RESULTS AND DISCUSSION
43
A) Management/Genetic Study
43
Al. Results
43
A2.
Discussion
59
B) PlantBreeding/Genetic Study
70
Bl.
Results
70
B2. Discussion
107
V.
SUMMARY AND CONCLUSIONS
119
BIBLIOGRAPHY
124
APPENDIX (Tables Al-A14)
136

LIST OF TABLES AND FIGURES
Page
Table 01 : Difference between extreme values within
cultivars
37
Table 02
Evaluation of within cultivar variances
compared to T18BE
39
Table 03
Plant and seed characteristics in both
plantings in 1985
44
Table 04
Plant and seed characteristics in both
plantings in 1986
45
Table 05
Plant and seed characteristics in early
plantings in 1985 & 1986
46
Table 06
Plant and seed characteristics in late
plantings in 1985 & 1986
47
Table 07
Disease rating for the inbred lines in
late planting 1985
48
Table 08
Disease rating for the lines over both
seasons in 1986
49
Table 09
Plant and seed characteristics
per growing season (two year summary}
50
Table 10
Plant and seed characteristics over seasons
and years
50
Table 11
Disease rating for the lines
(two year summary}
51
Table 12
Yield means at all treatments
levels
52
Table 13
Average rainfall/day from planting
to heading
53
Table 14
Late Planting Effects on Earliness
61
Table 15
Late Planting Effects on Dwarfness
63
Table 16
Late Planting Effects on Density
65
ix

x
Page
Table 17
Heterosis for days to flowering in 1987 . . . . . 70
Table 18
Heterosis for head length in 1987
71
Table 19
Heterosis for 100 seed weight in 1987
72
Table 20
Broad sense heritability
73
Table 21
Gene number per trait in 1987
87
Table 22
Chi-square tests in 1987
89
Table 23
Head length study in 1986: gene number
97
Table 24
F2 and expected backcross ratios
99
Table 25
Linkage study in 1987
105
Table 26
Summary of the minimum gene number per
cross
114
APPENDIX TABLES
136
LIST
OF
FIGURES
Figure 1
Frequency distribution for Maturity
74
Figure 2
Frequency distribution for Head length
78
Figure 3
Frequency distribution for Seed size
83

( I
) INTRODUCTION
Pearl millet,
Pennisetum glaucum,
is
the
sixth
most
important cereal crop
in the world and the most
important
cereal in the semi-arid tropics, where according to Burton
(1983) it will grow, produce and mature seeds on sandy or
rocky soils too acid, too dry and too infertile for sorghum
(Sorgum bicolor(L.) moench}
and maize
(Zea mays (L.)
).
It
has great yield potential and can produce more forage than
either sorghum or maize. Grain production of the best sorghum
or maize
hybrids
out yielded
the
top pearl millet
hybrids
under
optimum
growing
conditions
(Burton,
1983).
Frere
(1982) showed that the world average yield of maize, sorghum
and pearl millet were 4500,
3000 and 1250 kg/ha under high
inputs
and
1000,
875
and
600
kg/ha
under
low
intputs,
respectively.
This
low grain
yield
of pearl
millet,
as
compared to
maize
and sorghum,
needs
to be
corrected
by
developing more productive cultivars or hybrids because pearl
millet
is
irreplaceable
in
some
parts
of
the
semi-arid
tropics and increased grain yields would have
significant
impact
on
supplying
people
living
there
with
sufficient
amounts
of
the
only
cereal
they
can
grow.
Grain
yield
increase in pearl millet would also stimulate more interest
in the crop and speed up its extension.
Frere (1982)
noted an increase in
sorghum and millet
production by region from 1960 to 1980 in Africa (66%), Asia
1

2
(100%)
and
Latin
America
(560%).
Hanna
(1985,
personal
communication)
indicated that
there was
also
an
increased
interest in pearl millet as a grain crop in the U.S.( to date
it is cultivated in this region as a forage crop)
because of
its drought tolerance and its ability to produce grain under
minimal
inputs,
but
that
more
information
was
needed
to
successfully grow the crop in the U.S.
"The possible use of
pearl
millet
as
a
grain
crop
in
the
U.S.
awaits
the
development
of
short
early-maturing
hybrids
that
can
be
planted
and
harvested
with
the
same
equipment
used
for
sorghum and wheat" Burton (1983).
Increased pearl millet yields are a necessity to provide
more food especially in tropical areas with rapid population
growth and extreme climatic conditions. Such increases can be
attained by developing pearl millet
cultivars with longer
heads,
larger
seeds,
resistance
to
drought,
pests
and
diseases and with earliness allowing two or more crops per
year. One can also increase grain yield by optimizing plant
density
and/or
providing
the
best
field
conditions
and
cultural methods which will maximize grain production.
Rachie and
Majmudar
(1980)
reported on
pearl
millet
cultivars having good grain yield characteristics in India
and Africa
such as
'Bajra t
large-seeded
in India;
'Sanio'
large-seeded, drought resistant but late-maturing in Senegal;
'Zongo'
with very long heads
(up to
100cm)
in Niger;
and
'Maiwa'
resistant to downy mildew (Sclerospora graminicola
(Sacc.) Schroet) or green ear disease but late-maturing in
Nigeria.
One
can
also
add
large-seeded
and
very
early-

3
maturing 'Missi'
and
'Gnari'
in Togo.
From these examples,
characteristics for increasing grain yield appear to exist in
pearl millet but so far they are not well associated in a
good cultivar,
even though some attempts are reported from
India.
This needs to be
done especially in the U.S.
where
economical conditions allow the growth of high-yielding lines
and hybrids.
Some
progress
has
been
made at
Tifton,
Ga.
{Hash, 1986} in developing early large-seeded lines.
The objectives of this dissertation were to study the
agronomic effects of genes controlling early maturity, large
seeds,
long
heads,
dwarf
{combine
height}
growth,
rust
{Puccinia substriata var indica Zimm.} resistance, and leaf
blast
(pyricularia
grisea
{eke}
Sale.)
resistance.
Two
projects were designed to reach these objectives.

4
1. Management/Genetic studies
The objective was to determine the effects of planting
date, dwarfness and earliness in inbreds, and foliar diseases
(leaf blast and rust)
on pearl millet grain yield and
its
components.
2. Plant breeding/Genetic studies
The objectives were:
(a) to determine the genetics of head length and seed
size, and
(b) to determine the feasibility of developing long-
headed,
large-seeded, early and dwarf (combine
height) inbreds.

(11) ~ITERATURE REVIEW
A.
INTRODUCTION
Tremendous progress
has
been made
in agriculture
and
plant breeding in many parts of the world and yet there is
still a great need for high quality food to feed a rapidly
growing
population
and
to
avert
severe
famines
such
as
occurred
in Ethiopia
in 1985.
To
increase
the world food
supply,
damage
from
insects
and
diseases
needs
to
be
minimized;
yields
of
established
crops,
increased;
new
cultivars developed
and new
crops
introduced
into
areas,
where,
because
of
geographical
limitations
and
cultural
traditions,
they are not cUltivated.
Such is the case
for
pearl millet which is easily grown for forage in the southern
U.S.
(Burton,
1951, 1980, 1981 and 1983; Hanna and Burton,
1985a) but its grain is not used as human food or for animal
feed.
Recently,
Smith (1987)
showed that pearl millet and
grain
sorghum
can
replace
corn
in
chick
rations
without
adversely affecting chick body weight or efficiency.
This
may interest
farmers
to
grow early-maturing
pearl
millet
cultivars
in
the
future.
Successful cUltivation
of
pearl
millet as a grain crop in the U.S. requires economical grain
yields,
cultivars
adapted
to
machine
harvesting,
and
guidelines on production and management.
The development of
dwarf, early inbreds and hybrids, with long heads and large
seeds, coupled with a good management program are needed to
increase
pearl
millet
grain
production
in
the
U.S.
Furthermore, such lines and hybrids could be grown elsewhere
in the world to increase food production.
5

6
Although pearl millet has gone through a
number of
taxonomic name changes throughout its history (Chase, 1921;
Terrel, 1976;
Brunken et al.,
1977 and Jauhar,
1981),
this
dissertation will
utilize
the
latest
published
scientific
name which is Pennisetum glaucum (L.) R. Br.
(Terrel et al.,
1986).

7
B. BIOLOGY AND MORPHOLOGY OF PEARL MILLET
Pearl millet plant is a robust annual grass ranging in
height from 30 cm to more than 4 m. The inflorescence (false
spike)
may
be
stiff
and
compact
cylindrical,
conical,
spindle-shaped or candle-like, 2-3 cm or more in width, and
its length can range from
6 cm to
more than 100 cm.
The
rachis is straight, cylindrical, solid and unbranched.
In pearl millet, the female flowers (pistils and their
stigmas)
emerge
and
mature
2
to
3
days
before
the
male
flowers (stamen) of the same inflorescence.
This is called
protogyny and accounts for the fact that pearl millet is a
cross-pollinated
crop in which pollen can be carried by both
wind and insects (Rachie and Majmudar, 1980; Jauhar, 1981).
The genus Pennisetum has four basic chromosome numbers: x =
5; x = 7; x = 8 and x = 9.
Pearl millet (~. glaucum) has the
basic chromosome number of x = 7, and is a
diploid plant
with 2n = 2x = 14.
C. MANAGEMENT / GENETIC STUDY
The
increasing
world
food
demand
can
be
satisfied
through
the
development
and
use
of
more
productive
crop
cultivars
combined
with
good
management
to
maximize
the
growth and yield of improved cultivars.
Through soil
and plant management,
growth conditions
such as soil moisture, soil aeration, plant density and weed
population can be maintained at levels that permit optimum
plant growth for better yield.

8
Plant characters such as maturity,
tillering ability,
height,
head length and head thickness
have been found
to
affect yield in pearl millet (Burton, 1951; Shanker et al.,
1963 and Gupta and Atwal, 1966). Most of these characters are
quanti tatively
controlled
and
thus
are
affected
by
environmental factors and cultural practices.
Attempts are being made throughout the world (Gupta and
Nanda, 1971; Khadr and Oyinloye, 1978 and Bramel-Cox et al.,
1986) to develop more productive pearl millet cultivars. More
information is needed on crop management of these improved
cultivars.
Burton
(1951)
showed
that
plant
forage
yield
was
positively correlated with culm number, culm diameter, plant
height
and
leaf
width.
After
studying
four
groups
of
germplasm collections,
Gupta and
Nanda
(1971)
found
head
weight,
tiller
number,
earliness,
grain
size
and
grain
densi ty
to
be
important
components
of
grain
yield.
They
concluded that
single
head
weight was
closely related.
to
grain yield.
Tillering,
grain
size and grain density were
also important in India and American inbreds while earliness
and head thickness were important in West and East African
cultivars.
Burton
(1951)
found
earliness
to
show
some
partial
dominance over
late maturity.
Ram and
Singh (1975)
showed
that earliness is primarily due to dominant genes in Indian
lines. Later research showed that there are also recessive
genes controlling early maturity in pearl millet
(Burton,
1981
and Hanna
and Burton,
1985a).
Studies by Burton and

ABALO WIDI TCRALA
Factors influencing grain yield in Pearl millet Pennisetum
qlaucum (L.) R.
Br.
(Under the direction of WAYNE W. RANNA)
There is a
need
to
increase pearl
millet grain yield
to
provide more food of this highly palatable and nutritious crop
to the
growing world
human population.
Management
and plant
breeding projects were conducted at the Coastal Plain Experiment
Station in Tifton, Georgia, to study factors that influence pearl
millet
grain yield
and
its
components.
The
objective
of
the
management
study
was
to
determine
the
agronomic
effects
of
planting date, density, dwarfness, earliness, and foliar diseases
(leaf blast caused by pyricularia grisea (Cke)
Salc., and rust
caused by Puccinia substriata var
indica
)
on plant
and
seed
characteristics.
The
plant
breeding
project was
conducted
to
determine the genetics of pearl millet maturity, head length and
seed size, and also to determine the possibilities of developing
earlY,
dwarf
(combine
height),
long-headed,
and
large-seeded
pearl millet cultivars.
Four
near-isogenic
inbred
lines
were
grown
for
two
consecutive years in a split plot design in which two density
levels (444000 plants/ha, and 66000 plants/ha) were main plots
while the inbred lines were subplots. The experimental design was
a completely randomized block design with 8 replications in 1985
and 5 replications in 1986.
Two planting dates each year made
possible a study of both date of planting and disease effects.
Three Tift inbreds lines and three introduced cultivars were
used to
make crosses
and study parental,
F1, FZ and backcross
(BC) generations in the plant breeding project.
The results of the management study showed that earliness
increased disease ratings, tiller ing, seed size, and grain yield.,
but decreased plant height.
Dwarfness
increased tillering
but
decreased total head seed weight and grain yield. Higher plant
populations matured earlier, had higher disease ratings, and were
taller, but tillered less and had lower total head seed weight
than
low
plant
populations.
Late
planting
reduced
maturity,
tillering, total head seed weight, and grain yield, but increased
plant
height.
Disease
effects
even
though
statistically

9
Fortson (1966) showed dwarfness in the D1 and DZ lines to be
controlled by single recessive genes 21 and 2z,
Burton et al.
(1969) reported that the ~2 gene in pearl
millet reduced the rate of growth,
internode length,
plant
height and dry matter yields, and increased leaf percentage,
in vitro dry matter digestibility (IVDMD) and crude protein
content of the culms in spaced plants (0.9 m spacing between
plants).
Yield
reduction \\V'as
91%
to 69%
in a
dense
stand
(planted without thinning) but only 78% in 0.9 m spaced rows
for ~Z dwarfs
as
compared to
tall pearl
millet.
Extending
maturity date in pearl millet increased
leaf
percentage
and
leaf
yield,
but
decreased
dry
matter
percentages (Burton, Primo and Lowry, 1986).
Similar studies have been found useful in crop plants
other
than
pearl
millet.
Sorghum
in
particular
has
been
subject to these types of management studies. Francis et al.
(1984)
concluded
that some
sorghum hybrids
were stable
in
early
planting
whereas
others
were
stable
only
in
late
plantings and that yield stability seemed mainly a property
of
inbred parents.
Duncan
and
Moss
(1986),
evaluating
47
sorghum
hybrids
in
ratoon
cropping,
reported
that
at
a
Coastal Plain (Georgia) location the medium and late maturity
groups produced more grain weight per hectare than the early
maturi ty
group.
Kalmbacher
and
Martin
(1986)
found
grain
sorghum to decrease by about 310 kg/ha with each cm increase
in spacing. Adjei-Twum (1987) did not find marked differences
in the effects of plant density on sorghum growth and grain
yield in any season under dryland conditions in Ethiopia.

10
A study of
'FARZ 23'
and 'FARZ 25' cultivars of maize
(Ze~ mays (L.)
) grown at plant populations of 37000, 53000
and
80000
plants/ha
for
2
years
in
Nigeria
showed
that
optimum total dry matter yield and grain yield were reached
at 80000 plant/ha and 53000 plants/ha,
respectively (Lucas
and
Remison,
1984).
Bauer
and
Carter
(1986)
found
that
delayed planting
,
high plant densities and low applied N,
increased kernel breakage susceptibility in corn. Pfeiffer
and Pilcher (1987) reported a 9% decrease in soybean (Glycine
max (L.)
) yield due to delayed planting.
The
importance of
management
and
the use
of
var ious
plant
characteristics
to
increase
yield
cannot
be
overemphasized and to date there are only a few studies on
pearl millet in the USA where the crop is gaining more and
more attention.
Early maturity can be a desirable plant characteristic
in
crops
used
for
grain
production
to
facilitate
double
cropping and escape adverse environmental conditions such as
s'
c~.
/\\>.' ~-~
drought,
diseases and pests.
Pyricuwaraa spp.
(leaf blast)
[> 7
attacks millet in July in the Georgi{~cb.~dtk:l[P-1~ini'; followed
".
\\
/
.
by
rust
(Puccinia
substriata
var \\~~'i.c<;Lj./~~Mh becomes
.
.
~?s&; n \\ne'\\\\\\'!Y .
serl0US ln August (Hanna and Burton, 1983:a;}",.,-...'*P·lantlng early
and/or using early maturing cuI ti vars could reduce the losses
in grain yield from diseases.
Wells et al.
(1973) first observed an outbreak of rust
in
1972
that
appeared
to
be
potentially
destructive,
especially
in
pearl
millet
late
plantings.
Later,
Hanna,
Wells and Burton (1985) developed rust resistant pearl millet

11
lines controlled by a dominant gene. The dominant nature of
the resistance made it possible to have resistance in only
one
of
the
parents
to
produce
rust
resistant
hybrids.
Independently, Andrews, Rai and Singh (1985) also found rust
to be controlled by a
single dominant gene in India where
rust
(Puccinia
pennisi turn,
timme)
occurs
in
July,
where
increase
in
rust
severity
is
directly
correlated
with
temperature and relative humidity. Unless several sprays of
Dithane M-45 are applied,
rust can cause heavy losses under
favorable disease conditions (Sokhi et al. 1978). According
to Andrews et al. (1985) "pearl millet rust can reduce yield
in hybrid seed production
fields,
quality
in
forage,
and
occasionally grain yields". Monson et a1. (1986) studied the
effects of rust on yield and quality of pearl millet forage
and reported a 51% reduction (for rust susceptible plants as
compared to resistant plants) in digestible dry matter yield
due
to
rust
infection.
Their
"results
demonstrated
the
benefits to be derived from incorporation of rust resistance
into existing or new cultivars of pearl millet".
Singh and
Sokhi
(1983)
found
that
rust
incidence
and severity
were
higher in fast-rusting lines than in slow-rusting ones, due
to lower receptivity and less sporulation per uredium in the
latter. The authors also indicated that as disease increased,
grain size and number per plant decreased.
Leaf and stem rust impact on crop production has been
also
investigated
in other
economically
important
plants,
especially wheat
(1~iticum aestivum (L.) em Thell). Kapoor
and Joshi
in
1986
studied
components
of
slow
rusting
in

12
wheat. Reduced pustule density, smaller pustule size, longer
latent per iod and reduced spore production were recorded. The
authors
found
that
pustule
size
and
spore
amount
were
controlled by additive gene action. Heritability estimate was
fairly high for pustule size (1 to 3.39 mm2 pustule area) and
latent period (10
to 12.60 days),
low for pustule density
(3.62 to
6.56
pustules/ cm2 ) and
moderately high
for
spore
production amount (0.020 to 0.080 spore amount/pustule (pg)).
Sharma, Kang and Bhullar (1986) found the components of slow
rusting in wheat to positively correlate with each other,
producing
cumulative
effects.
Whether
the
cumulation
was
additive
or multiplicative was
not
stated
in
the
report.
Kapoor,
Pande
and
Joshi
(1986)
found
rust
severity
and
infection
rates
to
vary
among
six
susceptible
wheat
cultivars.
According to Rachie and Majmudar
(1980)
the principal
and most widespread pearl millet diseases in both India and
Africa
are
downy
mildew
or
green
ear
disease
caused
by
Sclerospora
graminicola
Sacc.
Shroet,
ergot
(Claviceps
microcephala etc.), smut (Tolyposporium penicillariae etc.),
rust, and phanerogamic parasite witchweed (Striga spp.).
In
the
United
states,
even
though
rust
appeared
to
be
potentially destructive as shown earlier, attention has been
given to diseases affecting the seedling stage such as leaf
and seedling
blights
(Helminthosporium
spp.),
top
rot
or
twisted
top
(Fusarium
moniliforme)
and
smut.
Rachie
and
Majmudar (1980) gave an extensive literature review on these
major millet diseases.

13
D) PLANT BREEDING I GENETIC STUDIES
(1) Introduction
Genetic and breeding improvements are long term ways
of improving grain yields.
In pearl millet, characteristics
such as large seed, long heads, tillering ability, pest and
disease resistance, and earliness favor high yields.
Pearl millet breeding behaviour and strategy have
been summarized by Rachie and Majmudar (1980) and Jauhar
(1981). The major breeding objectives in the past have been:
increasing grain yield and quality, incorporating resistance
to
disease
and
pests
(mainly
birds),
increasing
stress
tolerance,
and
raising
the
response
to
better
management
(particularly
higher
fertility
levels
and
higher
plant
populations). These authors added that grain yields can be
improved by selecting
for
head
length and diameter,
head
weight or compactness, head-bearing culms, and size of
seeds. Jauhar (1981) emphazised the need to maximize hybrid
vigor and improve nutritional quality. Also, modern hybrid
cultivars must be genetically broadbased in order to provide
some
insurance
against
genetic
vulnerability
to
disease.
Burton (1983) stated that pearl millet is equal to maize and
sorghum in genetic diversity and has excellent cytoplasmic
male
sterility
(cms)
that
facilitates
commercial
hybrid
production. To produce such hybrids,
genetic information
is needed
on yield
and its
components
such as seed size and head length.

14
(2) Seed size
In grasses the seeds are termed grains , caryopses,
or kernels. A grain is a fruit consisting of an embryo -
the
actual seed developed from the ovule - and the endosperm both
surrounded by purely maternal tissue forming the pericarp and
the seed coat. The seed coat or testa derived from the ovule,
together
with
the
pericarp
derived
from
the
ovary
wall,
protects the seed against moisture loss, attacks of organisms
and injuries from fungicides and insecticides. Both envelopes
adhere
to
the
seed
very
closely
making
it
difficult
to
distinguish
the
seed
from
this
very
special
grass
fruit
called
a
grain.
The
embryo
(or
germ)
and
the
endosperm
(foodstore
for
the
germ)
inheri t
identical
genetic
information through meiosis and double fertilization but in
different quantities. In a diploid plant, the diploid embryo
inherits n chromosomes from the seed or maternal parent and
n
chromosomes
from
the
pollen
or
paternal
parent.
The
triploid endosperm gets 2n chromosomes from the seed parent
and
n
chromosomes
from
the
pollen
parent.
According
to
Kiesselbach (1960), the growth rate of the endosperm greatly
exceeds
that
of
the
embryo
in early developmental
stages
following fertilization in maize. He stated that the ratio of
embryo to endospermweight is influenced genetically and also
by the favorableness of growth conditions which affect their
food supply.
He
defined the xenia
effect as any
immediate
effect
of
a
foreign
pollen parent
on
non-maternal
tissue
(embryo and endosperm) of the kernel and listed three causes
of
the
effects:
(1)
change
in
hybrid
vigor
of
the
non-

15
maternal
tissues,
which
may be
related
to
the
action
of
either chromosomal dosage of specific genes; (2) change from
recessive
to
dominant
endosperm
with
its
accompanying
physiological effects; and (3) (less important) quantitative
(size) inheritance. Citing several authors Kiesselbach (1960)
further indicated that certain inbred lines and hybrids used
as pollinators may increase the kernel weight and others may
reduce it, and that a change in endosperm type from recessive
to dominant as an immediate effect of crossing is accompanied
by increased weight
of mature kernels.
He also found
that
xenia effects
due to primary endosperm change bring about
materially increased yield of grain per plant or per acre,
whereas mere changes in the hybrid vigor of kernels mayor
may not have such yield effects. Therefore, the information
on the xenia effects of a crop can be very important in its
improvement.
According to Hutchinson (1984), larger seeds produce
larger seedlings than do smaller seeds of the same species,
and
within-species
grain-size
differences
derive
from
variation in the maternal contribution and not from varying
embryo sizes. The author also reported that only the genotype
and
external
environment,
and
not
differing
maternal
contributions
of
seed
foodstores,
contribute
to
the
expression of quantitative characters during the latter half
of the life cycle of Avena barbata plants in nature.
Agyanger et.
al. 1983,
(cited by Voigt et.
al.
1966), found
that the weight
of sorghum seed
is highly correlated with
seed size, so that weight is a reliable index for the size of

16
seed. Voigt et. al. (1966) studied the genetics of seed size
in
sorghum
and
the
possibility
of
increasing
the
trait
through selection.
Using
300
seed weight
for
a
seed size
index,
the
authors
combined
methods
outlined
by
Mather
(1949),
Powers and Lyon
(1941),
Powers
(1942)
and
Hayman
(1958,
1960)
to
calculate
expected means
for
the
Fl , FZ'
backcross one
(BC1) and backcross two (BCZ) from observed
parental means estimated by the least squares method.
They
also
analyzed
the
means
of
all
populations
to
provide
information
on
the
nature
of
gene
action
involved
in
determining
seed size.
Their
study showed seed size
gene
action to be almost entirely additive with a heritability of
about
60%
making
it
possible
to
increase
seed
Slze
by
selecting
and
recombining
large
seeded
FZs.
Using
the
formula outlined
by Sinnott et.
al.
(1950),
Voigt et
al.
found n = 4 loci or chromosome segments involved in seed size
expression.
But
using
a
different
formula,
taking
into
account all the generation means, they obtained n = 3 loci.
Both equations for estimating the number of genes
expressing
a
quantitative
trait
like
seed
size
were
based
on
the
assumption
that
the
genes
are
additive,
equal
in
their
effects, independentlY inherited and all alleles for largest
expression (here large
seed size) are
in one parent.
This
seemed to be the case for sorghum lines studied by Voigt et
al.
(1966).
If dominance exists, another formula, attributed to
Sewell Wright by Burton (1951), can be used to estimate the
minimum number of
genes controlling a
single quantitative

17
character. According to Burton (1951), that formula will give
an unbiased
estimate
of
the
gene
number
if
the
following
assumptions apply :
1) No linkage exists between pertinent genes.
2) One parent supplies only "+" factors and the
other only "_" factors among those which differ.
3) All genes are equally important.
4) The degree of dominance of all "+" factors is
the same for all of them.
5) No interactions (epistasis) between pertinent
non-allelic genes.
The formula gives a value of n that may be much smaller than
the true gene number when these assumptions do not
apply.
Kiniry
(1988),
using
shading prior
to
anthesis
to
reduce the number of kernels per panicle in sorghum reported
a
31%
increase
in kernel
weight
in
response
to
decreased
kernel
number
as
compared
to
seed
weight
in
non-shaded
plants.
In
Avena
barbata,
Hutchinson
(1984)
found
larger
seeds to produce larger seedlings than did smaller seeds but
larger seeds did not produce plants that were larger at later
stages when the seed-size difference was determined by floret
position within the same genotype (as it was the case in that
species).
Larger
seeds
did
not
produce
plants
that
were
larger
at
later
stages
when
the
seed-size
difference
characterized populations having different genotypes at many
loci.

18
In pearl millet, Phul and Athwal 1969, studied seven
generations (P
(F
x P
x P
l ,
P2, F , F
)
and B 2 (F
l
2, FJ , BCl
l
l
C
l
2 ))
and found grain size to be: 1) mainly controlled by additive
plus
additive
by
dominant
gene
actions,
2)
correlated
positively with grain hardness, 3) correlated negatively low
with
protein
content,
and
4)
greatly
influenced
by
environmental factors.They also reported grain hardness to be
highly and negatively correlated with protein content, to be
mainly controlled by additive and dominant gene effects, and
greatly influenced by environmental conditions. Hash (1986)
found
millet
seed
size
quantitatively
inherited
but
heri tability
was
relatively
low.
He
also
found
lOO-seed
weight more reproductible than harvestable culm number, head
seed weight and grain number per head. He reported the plot
mean grain size to be
positively (p<O.Ol)
correlated with
plot mean plant height, head diameter and grain weight per
head but
negatively
(p<O.05)
correlated with mean heading
date
and
grain
number
per
cm2 of
head
surface
area.
He
remarked "none of these correlations was so strong as to make
selection of desirable combinations of plant characteristics
unusually difficult".
(3) Earliness and plant improvement
Earliness can be useful in plant management but i t
can
also
affect
plant
improvement.
Van
Dat
and
Peterson
(1983) compared two near-isogenic rice cultivars and reported
that the early maturing 'ED7' yielded significantly more than

19
the late 'Calrose 76' in both early (May 11) and later (May
21) plantings.
'ED7' also had significantly higher lOO-grain
weights and fewer sterile florets than 'Calrose 76'
for the
later
sowing and
in general
performed
better
in
the
cool
environment used in the experiment.
Heterosis
has
been
found
of
less
magnitude
for
heading date than for yield in Durum wheat
(Triticum durum
(L.) (Amaya et al., 1972), and to be -8% in grain sorghum for
earliness against 66% for yield (Kulkarni and Shinde, 1985).
Saeed and
Francis
(1986),
found
a
highly significant
and
positive
correlation
between
grain
yield
and
days
to
flowering in sorghum in environments with relatively
high
night temperatures but the correlation was low in cool night
temperature
environments.
Rana
et.
al.(1984)
reported
nonlinear relationships among plant height, flowering time,
and grain yield but found early flowering and low leaf number
correlated with higher
yield
in
sorghum.
Sandhu and
Phul
(1984) reported high heritability estimates for pearl millet
head length, days to 50 percent flowering and plant height in
two environments.
For
the same crop,
Sagar et.
al.
(1985)
found the gene effects for heading and maturity similar with
non-additive variance predominant over additive variance and
concluded that days to heading would therefore be used for
the development of early-maturing types in pearl millet.
(4)
Head Length
Burton (1951), in a study of quantitative inheritance
in pearl millet, reported that heterosis was operating in the

20
expression of head length but his results showed an unusually
large h2 of 0.98 for head length. But as mentioned earlier,
Sandhu and Phul
(1984) also found pearl millet head length
highly
heritable.
Upadhyay
and
Murty
(1971)
studied
20
genetic stocks of pearl millet in a complete diallel minus
reciprocal Fis and found that no single genetic stock was a
good
combiner
for
all
the
characters
studied
nor
was
a
specific cross combination good for all characters. The gene
action was non-additive in general but the additive component
was substantial
for
flowering,
tiller number,
ear
length,
bristle length,
and yield. As one would expect,
they found
high heterosis in crosses between divergent parents for most
characters while progeny of least divergent parents did not
show
marked
heterosis.
Another
diallel
also
excluding
reciprocals
but
involving
only
10
inbred
parents
was
conducted
by
Tyagi
et
al.
(197 5)
who
found
limited
heterosis for head length,
ear diameter,
grain weight,
and
-<,4AM0~
days
to
head
emergence,
but
ma~~'1h~ffi.--~'elt.:~,~is and SeA
(specific combining ability) effeet~G !lrai~ 'y,~eld and head
t'J -C P, r,I E '") I ~~
number per plant. After studying F2~~.,,~i~;1ionsof five
~
'Q;'!
, \\ - - ,
- - - . - / ,<
crosses in sorghum, Fanous et. al.
(1~~!) reR~~ted relatively
~;,;~AY
large estimates of heritability and expected genetic advance
in each cross,
for panicle length and rachis branch length
which
were
positively
correlated
to
each
other.
They
therefore concluded that "rapid progress should result from
early generation selection for either character, which should
also
result
in
simultaneous
improvement
in
the
other
character as well".
In wheat,
the
additive,
dominance
and

21
dominance by dominance types of gene action have been found
significant for spike length, peduncle length and spikelets
per spike but the correlations were negative between dominant
(h) and epistasic (1) parameters for all measured characters.
The
authors
suggested
the
use
of
population
improvement
coupled
with
recurrent
selection
and
multiple
breeding
techniques for making rapid advances in the development of
improved lines.
(Singh, Bhullar and Gill, 1984)

( III
) MATERIALS AND METHODS
Two projects were conducted for this dissertation. One
was
to
provide
information
on
agronomic
effects
of
plant
height, maturity,
and plant spacing on (a) grain yield and
its
components
and
(b)
effect
of
foliar
disease
complex
(pyricularia and rust) on grain yield. The second project was
designed to determine the genetics of head length and seed
size and to study the feasibility of developing dwarf, early
maturing, long-headed and large-seeded pearl millet parental
lines and hybrids.
Both
projects
were
conducted
at
the
Coastal
Plain
Experimental Station, Tifton,
Georgia in the field and the
greenhouse.
A. MANAGEMENT / GENETIC STUDY
(1) Materials
Four near-isogenic pearl millet lines were used in this
project.
1. Tift 23B, released on 1 July, 1963 (Burton, 1965a),
was described as follows:
" 1.8 to 2.4 m tall
with bluish
grey seeds borne in heads 12.5 to 20 cm long. Planted on May
1, it will flower in 90 days and mature seeds 3 to 4 weeks
later, but planted on 15 August,
i t will flower
in only 70
22

23
days. It is highly self fertile and the sterility maintainer
for the cytoplasmic male sterile line Tift 23A ".
2.
Tift
23BE
was
developed
"by
selecting
an
early
maturing
plant
from
a
selfed
population
of
Be2 plants
developed by back-crossing Tift 23B1, to an early maturing
mutant induced with ethyl methane
sulfonate in Tift
23B1"
(Hanna and Burton, 1985a, 1985b). Compared to Tift 23B1, Tift
23B1E1 has shorter mature plant height (1.4 vs 1.9 m), shorter
heads
(17.8 vs 20.0 cm),
narrower culm diameter
(15 vs
20
mm),
shorter
peduncles
(21.8
vs.
24.5
cm)
and
fewer
internodes
(6 vs.
9).
Planted
in late Mayor
early June,
"Tift 23B1E1 will flower in 45 to 50 days after planting, and
mature seeds
in
70
to
75 days
(from planting
to
harvest)
compared to Tift 23B
which will flower
75 to 80 days after
1
planting and mature seeds in 100 to 105 days".
3. Tift 23DB was developed by transferring the ~2 dwarf
gene from Tift inbred 239
to Tift
23B,
and appears
to be
identical to Tift 23B except for height, 0.90 to 1.35 m for
the dwarf compared to 1.8 to 2.4 m for the tall. The ~2 gene
reduces the
length of
all internodes without altering
the
length of the peduncle and seedhead (Burton, 1967).
4.
Tift
23DBE
was
developed
by
transferring
the
recessive early maturing el
gene
from
a
'Katherine'
pearl
millet,
a
cultivar
of African
origin,
to
the
dwarf
late
inbred Tift 23DB. Tift 23DBE is photoperiod insensitive and
flowers in 45 to 55 days regardless of the summer planting
date
unlike
Tift
23DB
which
matures
earlier
when
summer

24
planting is delayed (Burton, 1981).
Some characters of these four inbreds recorded from this
two-year study are given in the following table:
========================================================
Inbred
Earliness*
Plant*
Head*
(50% heading)
Height
Length
1.Tall-Iate
71 to 81 days
2.30 m
18 -
28 cm
Tift 23B
2.Tall-early
54 days
1.60 m
16 -
23 cm
Tift 23BE
3.Dwarf-Iate
76 to 83 days
1.30 m
16 -
20 cm
Tift 23DB
4.Dwarf-early
51 days
0.90 -
1 m
15 -
24 cm
Tift 23DBE
* Two year summary
(2)Methods
Two plantings per year of the four near-isogenic lines
were made in 1985 and 1986. The two plantings were necessary
to study the plants'ability to escape grain yield reduction
due to diseases, early planting
(13 May,
1985 and 13 June,
1986) being disease free and late planting (09 July, 1985 and
18 July, 1986) being affected by the diseases.
In each season, the four near-isogenic inbred lines were
planted at the Coastal Plain Experimental Station in a split
plot design with 8 replications in 1985 and 5 replications in
1986. Two levels of plant spacing {2.5 cm between plants on
the
same
row I
i. e.
40
plants
per
meter
row,
and 17.0
cm

25
between plants on the same row,
i.e.
6 plants per meter row
) were main plots and near-isogenic lines were subplots. Each
subplot was a six-row plot 4.8 m long and 0.9 m between rows.
A two-row border surrounded the entire test.
Plots were planted with cone planters that placed 50 to
60 seeds per meter of row. Plants were thinned to one plant
every 2.5 cm (high plant population density: 444 000 plants
/ha) or one plant every 17 cm (low plant population density:
66 000 plants /ha) at about 15 to 20 days after planting, and
0.80 m wide alleys were cleared to mark plot limits.
To increase the effectiveness of disease
infection in
the late plantings,
diseased plant materials from infested
nurseries were
harvested with
a
silage
chopper and
spread
between rows on the test at about 40 days after planting.
After seed set, insecticide-treated kraft bags were used
to protect harvestable open-pollinated heads from insect and
bird
damage.
The
Tifton,
fine-loamy,
siliceous,
thermic,
Plinthic, Kandiudult, soil received 5-10-50 fertilizer at the
rate of 280 kg/ha applied in the row just before planting. A
preemergence
application
of
propazine
(Milogard),
or
2
chloro -
4, 6 - bis (isopropylamino) -
s -
triazine, at 2.24
kg/ha was made immediately after planting to control weeds.
Weed control was further achieved by mechanical tillage two
to
three
weeks
after
planting
(immediately
after
plant
thinning)
or as needed.
Whenever necessary,
the field was
sprayed with monocrotophos
(Azodrin),
or
dimethyl,
cis-l-
methyl-2-methylcarbamoylvinyl phosphate (McEwen et al. ,1979) ,

26
at recommended rates to control insects.
Data was recorded for ten characteristics as follows:
(1) Plant number per plot: Immediately after thinning to one
plant
per
hill
(before
tiller ing
started),
plants
of
the
center two rows were counted and the average plant number per
row recorded for each replication.
(2) Heading date: Days to 50% stigma exertion on the center
two rows.
(3) Head number per plot: Mean of the center two rows, after
heads flowered.
(4)
Plant
height
(cm):
Mean height
(
tip of head
to
soil
surface ) of the plants in the center two rows of each plot
at maturity.
(5) Disease rating: Ratings were made on a
scale of 0 to 5
based on disease severity, that is the area of plant tissue
(leaf area in this study) affected by disease and expressed
as a percentage of the total area. Rating # 0 corresponded to
0% and rating # 5 to 80-100% disease severity;
ratings # 1,
2, 3, and 4 corresponded to 1-20%, 20-40%, 40-60%, and 60-80%
disease severity,
respectively.
The ratings were made when
disease symptoms were first noticeable. There was one rating
on 16 September for the late planting in 1985 (early inbreds
were
maturing
seeds
and
late
inbreds were
at
fecondation
stage). Also, there was one rating on 10 September for both
early and late plantings in 1986 (in the early planting early
inbreds
were
maturing
seeds
and
late
inbreds
were
at
fecondation stage, while in the late planting early inbreds

27
were at milk stage and
late inbreds between boot and half
bloom stages). A second rating was performed on 23 September
for the late planting in 1986
(early inbreds were at
hard
dough stage
and late
inbreds were
between fecondation
and
early milk stages).
At
matur i ty,
ten bagged
heads \\"Jere
harvested on
the
center two rows of each
treatment plot,
tied in a
bundle,
tagged by the
inbred name
and
the
replication
number
and
allowed to dry for several weeks in a greenhouse. A day or
two
prior
to
threshing,
the
bundles
were
transferred
to
forced air ovens at 38 - 40oC. The information on each bundle
was
transferred
to
10 number
1
coin storage
brown
kraft
envelopes. The length of head was measured and written on the
envelope that would contain the seed from that head.
Heads
were individually machine threshed and clean seeds kept in
envelopes
and
weighed
to
the
nearest
O. 01g on
a
digital
scale.
(6) Head length (cm): Average of ten measurements for each
replication.
(7) Total head seed weight (g): Average of ten measurements
for each replication.
(8)
Weight
of
100
seeds
(g):
Mean
of
10
measurements.
Whenever there was enough seeds, four lOO-seed counts were
made for each envelope using a CQUNT-A-PACK seedcounter in
Athens. Each lOO-seed package was weighed to the nearest 0.01
g and the weight recorded.
(9)
Average
head
number
per
plant:
Head number
per
plot

28
divided by plant number per plot.
(10) Yield (kg/ha):
1 kg x mean head seed weight (g) x head/plot x 10000 m2
0.9 m x 4 m x 1000g
or mean head seed weight x head number /plot x (0.36)-1
Method of Analysis
The experimental design was a completely randomized bloc
design and the treatment design was a split plot design with
inbred
lines
as
fixed
effects
and
replications
as
random
effects. The analysis of variance relative to a
split plot
design along with Duncan's new multiple range test was used
to interpret the data .
B. PLANT BREEDING/GENETIC STUDY
(1) Materials
The objective of this project was to study the genetics
of
seed
size
and
head
length
and
the
feasibility
of
developing a dwarf, early, large-seeded (1.2 g/100
seeds) and long-headed millet. Six millet cultivars were used
in this study.
(1)
Tift
23DBE
:
Dwarf,
early
small
seeded
(0.51
g
/100
seeds) and small-headed inbred line,
(Burton, 1969).
(2) Tift 23B
: Tall,
late,
small-seeded (0.44 g/100 seeds)
and small-headed inbred line near-isogenic to Tift 23DBE.
Both inbreds were already described in the management study.

29
(3) Tift 18BE : It is an early mutation of the late Tift 18B
released on 01 May
,
1965 (Burton,
1965b) as the sterility
maintainer
of
the male-sterile
Tift 18A and
described
as
daylength
insensitive
that
flowers
in
90
days
in
spring
planting
and
in
70
days
in 15 August
planting.
Tift
18B
produces white seeds borne in heads 45 to 90 cm long.
Tift
18BE is a mid size plant with long heads but matures in about
half the time required for 18B.
(4)
'Gero',
long
head
cultivar
It
is
a
daylength
insensitive millet introduced in 1962 by Dr.
Glenn Burton.
Its heads are as long as or longer than those of Tift 18BE
but thicker and more robust. Plants also are taller. Although
described as an early-maturing millet in Nigeria as compared
to photoperiod-sensitive 'maiwa' (Rachie and Majmudar, 1980),
Gero is a late maturing cultivar in Tifton, 70 to 90 days to
flowering depending on planting date.
Seeds from these two
long-headed
cultivars
are
mid
size
to
small,
weighing
on
average 0.76 g/ 100 seeds.
(5)
'Togo'
: It is mid-size plant, short head, early large-
seeded cultivar originally from Togo but given to Dr. W. W.
Hanna by Dr. Anand Kumar
from Niger under the number 15198
and reported to flower in 36 days in Niger.
In Tifton i t is
as early as Tift 23DBE
and is highly male-sterile.
It
has
short, thick heads which bears very large seeds (1.18 g /100
seeds) .
(6)
'Walor Kassens'
cultivar
It
is a plant
introduction

30
(PI) cultivar called Walor Kassens from Ghana and registered
under the number PI 316666, 30 September, 1966, as an early
pearl millet
from the
Institute of
Technology and Science
Academy.
It
flowers
about
45
days
after
planting and
has
small heads bearing large seeds (1.26 g /100 seeds).
(2) Methods
To accomplish the objectives of this project,
crosses
were made
in all
combinations allowed by manageable
plant
characteristics such as maturity and fertility.
It was for
example
possible
to
store
pollen
from
early-maturing
cultivars
and
use
it
later
to
fertilize
late-maturing
cultivars (Hanna et al., 1983). However, pollen could not be
stored for the highly male-sterile early Togo cultivar, so,
the Togo (early) x Gero (late) crosses were very difficult to
make.
Backcrosses were made by growing Ft plants and parents
together
and
crossing
the
hybrids
with
their
respective
parents.
Parents,
Ft,
F2 and backcrosses were grown in
replicated
plots
under
the
same
conditions
and
relevant
traits were
recorded and analyzed.
All
crossings and plot
tests
were
conducted
in
the
Coastal
Plain
Experimental
Station fields and greenhouse in Tifton, Georgia.
In summer
1985, the first crosses were made in the field. In the winter
1985 to 1986,
backcrosses (BC) were made in the greenhouse
along with selfing Ft plants to produce F2 seeds. In summer
1986,
F2 and BC seeds from the greenhouse were grown in
replication in the field and more BCs were made.
In summer

31
1987, parents and F1s were grown in a completely randomized
block design (CRBD) with 5 replications, and F2s and BCs were
grown in replication in the field.
Plots for
parents and F1s were 4.45 m long, and plots
were 28.45 m and 62 m long for F2s and BCs in 1986 and 1987,
respectively. In both years and for all families, plots were
0.9 m wide.
Two to three weeks after planting, plants were thinnned
to a single plant per hill, 17 - 20 cm spacing between plants
within the row.
The soil conditions and cultural practices
were similar to that outlined for the management study.
Selfing and crossing
Selfing
was
achieved
by
protecting
pearl
millet
inflorescences from outside pollen with insecticide-treated
7.5 x
35 cm kraft
bags prior to stigma receptivity.
Self-
pollination was made under the stappled bags.
To make crosses, 7.5 x 35 cm glassine bags were put on
seed
plant
inflorescences
and
stapled
prior
to
stigma
receptivity. A day before crossing, insecticide-treated kraft
bags were put on male plant inflorescences starting to shed
pollen.
On
the
day of
the crossing
(when
stigmas
on
seed
plant inflorescences were receptive) pollen was collected by
carefully shaking and removing the kraft bags from the male
plants.
The cross was made by replacing the glassine bag on
the seed plant with a pollen-containing kraft bag which was
shaken to spread
the pollen on
the receptive stigmas.
The

32
kraft bag was stapled to avoid its removal by the wind.
Since some heads were longer than 35 cm (Gero and Tift
l8BE),
controlled
pollination
(self ing
or
crossing)
only
affected the top 35 cm of the long heads. However, sometimes
the head could
be bent
and up to
50 cm of
the head could
therefore be enclosed in the
Kraft bag.
Data collection
(i) Heading date : This was recorded only for selfed plants
and corresponded to the date the Kraft bag was placed on the
head ;
that is when the head was partly or entirely out of
the boot but prior to stigma exertion. This date was marked
on the bag and transferred to the seed storage envelope at
threshing.
(2) Head length (cm) : Some heads were longer than the kraft
bags, so,
the entire head length (Head L) was recorded and
used to study the genetics of the heads. The head covered by
the bag (or seed head length) was also recorded and used in
the
formula
that
estimated the
seed weight
of
the
entire
head.
(3) Total head seed weight (THSW in g) : After measuring the
head length, the part of the head that was outside the kraft
bag was cut off and only the controlled pollination part of
the head was threshed. For most heads, HSW was the weight of
the seeds directly collected from threshing and represented
the seeds from the entire head.
For other heads,
collected
seeds were
from
only part
of
the
head
and
the
following

33
formula was used to estimate the seed weight of the entire
head:
THSW
= Seed weight x Head length
Seed head length
(4) Weight of 100 seeds (g)
: 100 seeds from each head were
counted and weighed to the
nearest 0.01 g to get
lOO-seed
weight.
Method of analyses
Mean analyses were conducted on original data to study
families
and
replications
means
and
their
variances.
The
analyses showed that family variances were proportional to
the means and the coefficients of variation were high for
the total head seed weight and ranged from 21% (F1 family 87-
10142) to 158% (Parent family 87-10080, Table A2 ).
In such a situation, data transformation was needed as
suggested by Hoyle
(1973)
to
satisfy at
least
one of
the
following three basic assumptions of the standard statistical
techniques associated with the linear model:
1. Additivity: According to this assumption, the main effects
combine linearly or add
up to
'explain'
the
observations.
"This assumption is necessary to ensure identification of the
parameters in most cases and is therefore important in the
interpretation of the data" (HoYle, 1973).
2.
Constancy of variance:
The observations
are assumed
to
have a constant variance about their varying means, that is,
the
variance
is
assumed
to
be
independent
of
both
the
expected values of the observations and the sample size. This

34
assumption
"is
usually
made
because
i t
simplifies
the
estimation technique. with it,
least squares estimators are
also
minimum
variance
unbiased
linear
estimators
(LSE
=
MVULE). Without it, a weighted least squares analysis gives
the MVULE's" (Hoyle, 1973).
3. Normality: The observations are assumed to have a normal
distribution. This "assumption is critically important in the
testing of hypotheses, for the normality of the observations
leads to comparatively simple and standard testing procedures
which have been thoroughly investigated,
and more importantly, leads to distributions which have been
tabulated" (Hoyle, 1973).
Using the above knowledge and suggested transformation
methods, square root, and both natural and decimal logarithm
transformations were attempted on the original data.
Only the decimal logarithm transformation stabilised the
variances, and reduced the coefficients of variation (CV's).
After the transformation,
the CV's for
the total head seed
weight ranged from 2.7%
(F1 family 87-10142) to 29% (Parent
family 87-10080).
To avoid negative values associated with
the logarithm of small numbers,
total head seed weight and
hundred
seed
weight
were
multiplied
by
100
during
the
transformation.
For
days to
flowering and
head length the
transformation was x = log10(Xo ) and for both total head and
hundred seed weights i t was x = log10 (100 x Xo ). In each case
Xo was the data in original units. Even though this logarithm
transformation was found necessary,
i t was more convenient

35
(easier to follow
through),
in some
cases,
to analyse
the
data in original units.
The univariate
analysis was conducted
along with
the
frequency
distributions
per
family
and
per
replication
observations.
This
helped
to detect
and
eliminate extreme
values (outliers) in some parent and F1 families.
The analysis of variance was performed over the data of
the parents
and
hybrids
grown
in a
completely
randomized
block design (CRBD) with 5 replications in 1987. The results
(Tables A4 & A5) showed within variations in some cultivars.
The
various
causes
of
these
variations
may
be
the
susceptibility of the inbred lines to environmental sources
of
variation,
uncontrolled
outcrossing,
or
a
mixture
of
genotypes in cultivars.
Data in Table 1 showed those within-cuI tivar variations,
computed
from
Table A5,
and
translated
into
the
original
units. All differences in the table were
significant
(p <
0.004) except for the hundred seed weight difference between
T23B and T23DBE. The reason why a 39%
difference between the
two near-isogenic
inbreds was not
detected
as
significant
was probably because T23DBE had only one observation for head
and hundred
seed weights
(Table A3C)
creating a
negative
degree of freedom for reps x family interaction. The two-year
management study showed that T23B was on the average
(p
=
0.002)
13% lower
in hundred seed weight than T23DBE.
This
significant difference would have been confirmed here if i t
were not for
the high sterility of T23DBE in 1987.
The
3%

36
difference
in
head
length
between
the
two
near-isogenic
inbreds was not significant in the management study.
For
true
inbred
lines
the
within-cultivar
variation
should be
due to
environmental effects mainly.
Since Tift
18BE, with 6 families, is an established inbred, its within-
cultivar
variance
can
be
assumed
to
be
mainly
of
environmental origin and can be used as a reference to
test other within-cultivar variances as shown in Table 2.
Table l:Difference between extreme values within-cultivars
and their percentage to the minimum value.
==========================================================
Maturity (days) Head length
Seed size
Cultivar
Range
Diff.
Range
Diff.
Range
Diff.
Gero
60.3
7.2
31. 8 cm
19.3 cm
0.56 g
0.43 g
f
= 9
to
to
to
n = 45 - 72
67.5
12%
51.1 cm
61%
0.99 g
78%
T18BE
43.6
1.1
39.3 cm
2.8 cm
0.74 g
0.10 g
f
= 6
to
to
to
n = 46 - 84
44.7
3%
42.1 cm
7%
0.84 g
14%
Walor
43.8
5.7
14.1 cm
9.3 cm
0.93 g
0.73 g
f
= 15
n = 1;
to
to
to
22 -
59
49.4
13%
24.4 cm
66%
1.7 g
79%
Togo
41.8
5.8
17.9 cm
1.6 cm
1.0 g
0.2 g
f
= 9
to
to
to
n = 25 - 64
47.5
14%
19.5 cm
9%
1. 2 g
17%
T23B n = 60
70.0
23.0
17.3 cm
0.4 cm
0.4 g
0.2 g
vs
vs
vs
vs
T23DBE
47.0
49%
17.7
2%
0.6 g
39%
n = 62
ns
Diff. = difference between extreme values;
f
= number of families grown for the cultivar;
n
= number of plants studied per family;
Seed size was meazured by the weight (g) of 100 seeds.

37
T23B and
T23DBE
are
near-isogenic
inbreds but
only one
family
of
each
was
grown
and
their
individual
within-
cultivar variances could not be estimated.
From
data in Table 2,
within-cultivar variances
for
all three traits under study were too high in late long-
headed Gero
and early
large-seeded Walor
to be
considered
due to environmental effects only. Within-cultivar variance
of head length and hundred seed weight
in the early large-
seeded Togo can be assumed to be due to mainly environmental
effects. But this cultivar's maturity variance happened to be
large. Taking into account the management study,
i t appears
that T23B and T23DBE are very
different in their maturity (as expected),
but they also
differ in their seed size.
One conclusion that can be drawn from this,
(Table 2),
is
that
environment
effects
alone
cannot
account
for
the
large within-cultivar variances found in Gero, Walor, and to
some extent in Togo materials. Another
important
source of
var iation could
be
of
genetic
origin.
The
choice
of
the
parents for quantitative traits can be a very delicate step.
It
is
possible
that
Gero,
Walor
and
Togo
cultivars
are
mixtures
of
genotypes
instead
of
each
having
a
single
genotype.
This
may
explain
part
of
the
within-cultivar
variance found
in Gero and Walor for head length and
seed
size, both traits being reported to have dominant effects and
expected to be controlled by a few genes. Burton (1951) found
maturity to be controlled by several genes but later studies

38
(Burton, 1981; Hanna and Burton, 1985a) showed earliness to
be recessive and controlled by a single gene.
It
is
possible
that
maturity
in Gero,
Togo
and Walor
is
controlled by several genes and the genetic variance among
different families of the same cultivar could explain part of
the within cultivar variance found in these materials.
For
each
single
cr-oss
between
inbred
lines,
the
hierarchy of variances of ,the parents (P), hybrids (Ft),
Table 2:
Evaluation of within-cultivar variances using
Tift 18BE as reference with the within-cultivar
variance set to ~OO%.
=======================================================
Cultivar
Maturity
I
Head
length
Seed size
----------~-----------------------------
Gero
f
= 9
466%
847%
567%
n = 45 - 72
T18BE
f
= 6
100%
100%
100%
n = 46 - 84
Walor
f
= 15
505%
920%
566%
n = 1; 22 - 59
Togo
f
= 9
535%
124%
125%
n = 25 - 64
T23B
n = 60
vs
1904%
32%
282%
T23DBE
n = 62
f = number of families grown per cultivar;
n = number of plants studied per family.

39
and
segregating
families
(F2 ) and backcrosses (BC) is as
following:
F2 > BC
>
FI
=
PI = P2•
This expected hierarchy of variances across generations was
observed only in some crosses for each character studied. No
explaination
is
speculated
for
why
in
other
crosses
one
parent would show more variability than an F2 or why an F2
would
be
less
variable
than
an
FI.
Similar
deviations,
however, were recorded by Burton (1951).
These deviations and the variations within the cultivars
limited the number of crosses to study and also the choice of
analyses that could be conducted on the data.
For example,
finding crosses that were logical and could make up a diallel
wi thout
reciprocals
was
not
possible
so
that
general
and
specific combining abilities were not studied. Only crosses
that showed the expected hierarchy of variances (crosses 3,
7, and 15 in 1987 for maturity i
crosses 1,
3, 4,
and 7 in
1987 and crosses 1,
2,
and 3 in 1986 for
headlength i
and
crosses 9, and 13 in 1987 for seed size, Tables Al & A2) were
retained
for
further
analyses,
and
only
heterosis,
broad
sense heritability,
frequency distribution, and a tentative
determination of the number of genes in maturity, head length
and seed size were attempted.
However,
the analysis of the
whole data is available in Appendix Tables All to A14.
Heterosis was computed using the formulas given by Fehr
(1987, p. 175) and Jinks (Frankel, 1983 p.
4).
Mid-parent
(MP)
heterosis and high-parent
(HP)
heterosis
are defined as following
:

40
Mid-parent heterosis (%)
= (Fi
MP) x lOO/MP
High-parent heterosis (%) = (Fi
HP) x lOO/HP
where Fi and HP are mean performances of the hybrid and
high-parent respectively and MP = 0.5(Pi + P2) with Pi and
P2 being the mean performances of the parents, (Fehr,
1987).
According to Jinks (Frankel, 1983), heterosis (H) is
equal to H = Fi - P2 = h + d
for traits like maturity
where the better parent has a lower value than the other
parent and H = Fi - Pi = h - d
for traits like head
length where the better parent has a higher value than the
other parent.
In these formulas,
d represents the sum of
additive effects of independent loci and is equal to
0.5(Pi - P2), and h, the sum of dominant effects is equal
The broad sense heritability (H2) was computed using the
formulas outlined by Allard (1960):
Vg = (Vpi + VP2 + Vn )/3;
VG = VF2 - Vg ; and
H2 = VG / VF2 . V is the variance of environment (E), parents
(Pi & P2)' hybrid (Fi ), F2, and genotype (G).
Since the selected crosses only had one backcross data
(instead
of
data
of
both
backcrosses),
the
narrow
sense
heritability could not be estimated.

41
The frequency distribution figures were plotted using
the scientific graph system SIGMAPLOT.
Since headlength, seed size, and maturity involved some
kind
of
dominance
in
a
cross
pollinated crop
like
pearl
millet, the number of genes was determined using the formula
attributed to Sewell Wright by Burton (1951), that is
n = 0.25(0.75 - h + h2)D2/(62Y2 - 6 2n ) where D = P2 - Pl
and h = (FI - Pl)/D
with P2 being the largest parent, D the
additive effect, and h the dominant effect.
The number
of genes
controlling each
trait again was
estimated using the chisquare test outlined by Hanna et al.,
in 1978.
To do this,
each F2 distribution was divided into
two classes: the recessive class and the dominant class. The
level of dominance was determined by comparing the means of
both parents to that of the hybrid Fl . The mean of the hybrid
is supposed to be closer to that of the dominant parent than
to the mean of the recessive parent.
The next step was to locate the mean of the recessive parent
in the
F2
distribution.
The
frequency of
the
recessive
F2
class was the frequency of the individuals with values going
from the mean of the recessive parent
(or one to two units
higher or lower than the mean, according to the situation),
to the nearest end of the distribution.

42
The
linkage
chisquare test
also proposed
by Hanna
et
al., 1978, was used to check for linkage between any two of
the three traits under consideration, that is, maturity, head
length and seed size.

(IV) RESULTS AND DISCUSSION
(A) Management I Genetic Study
Al.Results
The results of this management study are presented in
TabbIes
3
through
12.
Data
in
Tables
3
through
8
include
analyses of variances
(ANOVA)
tables
and
data
in Tables
9
through 12
summarize the
findings per
season and per year
for easier
interpretation.
The analyses per growing season
are available in APpendix Tables 33 to 36.
The interaction between years
(Y),
inbreds
(I)
and
plant
populat ion dens it y
(D),
(Tables
5
and
6),
\\vas
non-
significant
at
p
=
0.05
for
head
number
per
plot,
head
length, total head seed weight, lOO-seed weight and yield in
early plantings
(Table
5)
but
was
highly
significant
for
plant height
(p=0.0044),
days to 50% heading or maturity
(p = 0.0001)
and
significant
for
head number per
plant or
plant tillering ability (p = 0.0311). The YxIxD interaction
was highly significant for head number per plot (p = 0.0089),
significant for total head seed weight (p = 0.0279) and non-
significant
for
all
other
traits
at
p
=
0.05,
in
late
plantings (Table 6). Whenever non-significant, the YxIxD was
used as a more accurate error term in computing F -Tests for
main effects and lower levels of interaction.

Table 3: Plant and seed characteristics of four near-isogenic pearl millet
inbreds planted at two spacings in two seasons 13 May, and 09 July, 1985
=========================================================================================
Plant #
Plant
Maturity Head no. Head no.
Head
Head seed 100 seeds
Yield
Treatment per plot height* (days)
per plot per plant length
wt (g.)
weight (g) kg/ha
SEASONS (S) 1
Early
27b
58b
64.9a
118b
5.2a
19.2a
6.2a
0.55a
1950a
Late
63a
136a
55.2b
130a
3.2b
19.1a
2.6b
0.53a
930b
INBRED(I)1
T23B
51a
146a
68.9b
105c
3.0c
21. 2a
7.0a
0.54b
1960a
T23BE
49a
93b
50.7c
154a
4.6b
18.4c
4.1b
0.60a
1960a
T23DB
49a
84c
72.3a
99d
3.0c
17.8d
3.3c
0.30c
860b
T23DBE
r2b
64d
48.4d
139b
6.2a
19.2b
2.5d
0.53b
990b
DENSITY(D)
High
69a
98a
58.8b
134a
2.7b
18.8b
4.1b
0.49a
1470a
Low
21b
96b
61.3a
114b
5.7a
19.5a
4.7a
0.49a
1440a
A
N
0
V
A
(
S
)
0.0001
0.0001
0.0001
0.0026
0.0001
0.2354
0.0001
0.0001
0.0001
(
I
)
0.0001
0.0001
0.0001
0.0003
0.0001
0.0001
0.0004
0.0030
0.0001
( D
)
0.0001
0.0001
0.0001
0.0010
0.0001
0.0001
0.0118
0.8167
0.38
(SxI)
0.0001
0.0001
0.0001
0.0269
0.0001
0.0001
0.0248
0.0284
0.20
(SxD)
0.0001
0.0001
0.0001
0.0465
0.0005
0.8953
0.0608
0.0469
0.42
(IxD)
0.0001
0.0237
0.0001
0.4670
0.0001
0.0110
0.6389
0.0200
0.04
S x I x D
0.0001
0.0001
0.0001
0.6386
0.0065
0.0219
0.7484
0.0756
0.08
CV
11
3
2
9
4
4
24
12
26
Overall Mean
45
97
60.1
124
14.7
19.1
4.4
0.54
1200
1: Duncan's multiple range test at 5% level; The F test is non
significant for p > 0.05. * :
Plant height and head length are in cm .
44

Table 4: Plant and seed characteristics of four near-isogenic pearl millet
inbreds planted at two spacings in two seasons: 13 June, and 18 July, 1986
=========================================================================================
Plant #
Plant
Maturity Head no. Head no.
Head
Head seed 100 seeds
Yield
Treatment per plot height* (days)
per plot per plant length weight(g) weight(g)
kg/ha
SEASONS (S) 1
Early
37b
133a
60.3a
100a
3.5a
18.6a
6.4a
0.63a
1770a
Late
48a
134a
56.4b
99a
2.9b
18.0b
3.6b
0.52b
990b
INBRED( 1)1
T23B
40b
187a
68.4a
95c
3.2b
18.1b
5.6a
0.50d
1470b
T23BE
46a
139b
48.8b
119a
3.6a
18.9a
5.4a
0.61b
1780a
T23DB
41b
113c
68.1a
79d
2.7c
17.3c
4.1c
0.55c
870c
T23DBE
49b
96d
48.0c
105b
3.4b
19.1a
4.9b
0.64a
1390b
DENSITY (D) 1
High
65a
139a
56.9b
109a
1. 7b
18.0b
4.5b
0.58a
1340a
Low
19b
128b
59.8a
90b
4.7a
18.7a
5.6a
0.57a
1410a
A
N
o
V
A
( S )
0.0001
0.7691
0.0001
0.7910
0.0001
0.0015
0.0001
0.0001
0.0001
(
I
)
0.0003
0.0001
0.0001
0.0011
0.0321
0.0004
0.0904
0.0001
0.0001
(
D
)
0.0001
0.0013
0.0010
0.0011
0.0001
0.1020
0.0263
0.5849
0.3300
(SxI)
0.0757
0.0215
0.0005
0.0475
0.1834
0.0262
0.0621
0.0001
0.0020
(SxD)
0.0001
0.0305
0.0288
0.3117
0.6654
0.4094
0.8981
0.5000
0.1700
(IxD)
0.0111
0.0256
0.0297
0.0002
0.0302
0.0028
0.0001
0.5726
0.0000
S x I
x D
0.0222
0.4724
0.4061
0.6129
0.1851
0.0040
0.1343
0.0001
0.0200
CV
10
4
2
9
11
5
17
6
24
Overall Mean
42
134
58.3
99
3.2
18.3
5.0
0.6
1150
1:
Duncan's multiple range test at 5% level i The F test is non
significant for p > 0.05 i * :
Plant height and head length are in cm .
45

Table 5: Plant and seed characteristics of four near-isogenic pearl millet inbred lines
planted at two spacings in 13 May, 1985 and 13 June, 1986 (early plantings)
=========================================================================================
Plant #
Plant
Maturity
Head no. Head no.
Head
Head seed 100 seeds Yield
Treatment per plot height* (days)
per plot per plant length weight{g) weight{g) kg/ha
YEAR (y)1
1985
28b
59b
64.5a
122a
5.2a
19.3a
6.4a
0.55b
2070a
1986
37a
133a
60.3b
100b
3.5b
18.6b
6.4a
0.64a
1770b
INBRED{ I)1
T23B
33a
139a
74.4b
97c
3.4c
20.2a
8.0a
0.54b
2140b
T23BE
36a
95b
51. Oc
136a
4.7b
18.6b
6.8b
0.62a
2510a
T23DB
33a
83c
75.5a
86d
3.2c
18.1c
5.8c
0.51c
1350d
T23DBE
f8b
67d
48.8d
125b
6.0a
19.0b
5.1c
0.63a
1680c
DENSITY{D)
High
47a
101a
60.4b
123a
2.9b
18.7b
5.8b
0.56b
1960a
Low
18b
91b
64.4a
99b
5.8a
19.2a
7.0a
0.59a
1890a
A
N
o
V
A
( Y )
0.0001
0.0001
0.0001
0.0001
0.0001
0.0048
0.9375
0.0001
0.0023
(
I
)
0.0001
0.0001
0.0001
0.0650
0.0001
0.6287
0.5864
0.4657
0.0001
(
D
)
0.0001
0.0001
0.0001
0.0972
0.0001
0.2422
0.0392
0.5938
0.4600
(YxI)
0.0001
0.0001
0.0001
0.0529
0.0001
0.0174
0.0240
0.0030
0.0108
(YxD)
0.0467
0.1662
0.0001
0.2856
0.0001
0.4795
0.8590
0.0131
0.4900
(IxD)
O.OOOl
0.0001
0.4432
0.2778
0.8566
0.1918
0.2699
0.0282
0.0155
Y x I x D
0.0003
0.0044
0.0001
0.2174
0.0311
0.0514
0.1375
0.6256
0.8200
CV
14
4
2
9
16
4
18
7
22
Overall Mean
32
96
62.4
111
4.3
19.0
6.4
0.6
1600
1: Duncan's multiple range test at 5% level i
The F test is non
significant for p > 0.05 i
* : Plant height and head length are in cm .
46

Table 6: Plant and seed characteristics of four near-isogenic pearl millet inbred lines
planted at two spacings in 9 July, 1985 and 18 July, 1986 (late plantings)
=========================================================================================
Plant #
Plant
Maturity Head no. Head no.
Head
Head seed 100 seeds
Yield
Treatment per plot height* (days)
per plot per plant length weight(g) weight(g)
kg/ha
YEAR (Y)
1
1985
62a
97b
55.1b
133a
3.3a
19.0a
2.6b
0.45b
950a
1986
48b
134a
56.4a
99b
2.9b
18.0b
3.6a
0.53a
990a
INBRED( I)1
T23B
58a
194a
62.4b
105c
2.8b
19.2a
5.0a
0.50b
1450a
T23BF.
59a
l37b
48.5c
142a
3.6a
18.9a
3.4b
0.60a
1300b
T23DB
58a
114c
64.6a
97d
2.6b
17.0b
1.5d
0.30c
390d
T23DBE
47b
93d
47.6d
121b
3.5a
19.1a
2.4c
0.50b
740c
DENSITY (D) 1
High
88a
137a
55.1b
123a
1. 4b
18.2b
2.8b
0.49a
950a
Low
23b
133b
56.4a
108b
4.8a
19.0a
3.4a
0.47a
990a
A
N
o
V
A
(
Y
)
0.0001
0.6628
0.0010
0.0001
0.0004
0.0001
0.0001
0.0025
0.4300
(
I
)
0.0001
0.0073
0.0019
0.0483
0.0001
0.4253
0.0001
0.3781
0.0472
( D
)
0.0001
0.5687
0.3000
0.0668
0.0001
0.4028
0.0001
0.5146
0.7600
(YxI)
0.0001
0.0062
0.0234
0.0250
0.0001
0.0001
0.0006
0.0175
0.0480
(YxD)
0.0001
0.0307
0.3874
0.1491
0.0001
0.0009
0.0001
0.3214
0.0930
(IxD)
0.0001
0.4048
0.0622
0.4029
0.0001
0.2238
0.0006
0.6238
0.2100
(Y x I x D)
0.0001
0.1538
0.1017
0.6675
0.0089
0.9879
0.0279
0.1108
0.4270
CV
7
3
1
9
9
10
20
12
24
Overall Mean
55
135
55.7
116
3.1
18.7
3.1
0.5
810
1:
Duncan's multiple range test at 5% level; The F test is non
significant for p > 0.05 ; * :
Plant height and head length are in cm .
47

Table 7.
Disease rating1 for four near-isogenic pearl
millet inbreds planted at two spacings in
late planting 1985
;;::~~:~~===========;;;~~~~:;~:f=========R~~~2==========
INBRED(I)
T23B
2.7 b
2.7 a
T23BE
3.5 a
2.8 a
T23DB
2.5 c
2.9 a
T23DBE
3.6 a
2.9 a
DENSITY(D)
HIGH
3.5 a
3.0 a
LOW
2.7 b
2.6 b
A
N
0
V
A
INBRED(I)
0.0001 **
0.1316 NS
DENSITY(D)
0.0001 **
0.0185 *
I x D
0.0914 NS
0.5046 NS
CV
8%
12%
Overall Mean
2.8
2.8
Rating on a 0 to 5 scale: 0 =disease free, and
5 = severely affected.
2
Duncan's new multiple range test at 5%
NS
non-significant
*
significant at 1 to 5% level
**
significant at p < 1% level
48

Table 8. Disease rating1 for four near-isogenic pearl
millet inbreds planted at two spacings in
early and late plantings in 1986
-----------------------------------------------------
-----------------------------------------------------
pyricularia
Foliar Disease
Early
Late
Treatment
Late planting
Planting
Planting
INBRED( 1)2
T23B
2.0 b
2.0 b
1.4 ab
T23BE
4.3 a
3.5 a
1.6 a
T23DB
2.1 b
2.3 b
1.3 b
T23DBE
4.2 a
3.3 a
1.6 a
DENSITY (D) 2
HIGH
3.5 a
3.4 a
1. 9 a
LOW
2.8 b
2.2 b
L l b
A
N
0
V
A
INBRED(I)
0.0001 **
0.0001**
0.1998 NS
DENSITY(D)
0.0249 *
0.0025 **
0.0132 *
I x D
0.5885 NS
0.1898 NS
0.0220 *
cv
16%
13%
17%
Overall Mean
3.2
2.8
1.5
1
Rating on a 0 to 5 scale: 0 = disease free and
5 = severely affected.
2 • Duncan's new multiple range test at 5%
NS
non significant
*
significant at 1 to 5% level
**
significant at p < 1% level
49

Table 9. Plant and seed characteristics of the lines1
===========================================================
Matu- Plant
Head/ Head
Head-seed lOO-seed
rity
height Plant
Length
weight
Weight
Yield
Treat.
(days)
(cm)
(no.)
(cm)
(g/head)
(g/100)
kg/ha
Maturity in Inbreds
Early
49b*
98b
4.5a
18.9a
4.4b
0.6a
1530a
Late
70a
132a
3.0b
18.6b
5.0a
0.5b
1290b
Plant height in Inbreds
Dwarf
59a
89b
3.9a
18.3b
5.7a
0.6a
1030b
Tall
60a
141a
3.6b
19.2a
3.7b
0.5b
1800a
Plant population density
High
58b*
119a
2.2b
18.4b
4.3b
0.53a
1410a
Low
61a
112b
5.2a
19.1a
5.1a
0.53a
1410a
Overall means over both seasons and years.
* : Duncan's multiple range test at 5% level.
Table 10. Plant and seed characteristics of the lines1
=========================================================
Matu- Plant Head/ Head
Head-seed 100 seed
rity height Plant Length
weight
Weight
Yield
Treat.
(days)
(cm)
(no.)
(cm)
(g/head)
(g/100) kg/ha
---------------------------------------------------------
Season1
Overall Average )1
Early
63a*
96b
4.4a
18.9a
6.3a
0.58a
1380a
Late
56b
135a
3.1b
18.6b
3.1b
0.59b
940b
1985
60a*
97b
4.3a
19.2a
4.5b
0.48b
1440a
1986
58b
134a
3.2b
18.3b
5.0a
0.58a
1380b
1
Two year summary;
2
Means of both seasons of the year.
* : Duncan's multiple range test at 5% level.
50

Table 11. Disease rating*
for the four lines
(Summary of Tables 7 & 8 )
---------------------------------------------------------
---------------------------------------------------------
Pyricularia1
Rust
Foliar Diseases
Late Plantings
Late Plant.
Early and Late
Treatment
1985, 1986
1985
Plantings 1986
Maturity in Inbreds
Early
2.6 a**
2.9 a
3.9 a
Late
2.0 b
2.8 a
2.1 b
Plant height in Inbreds
Dwarf
2.3 a
2.9 a
3.0 a
Tall
2.4 a
2.8 a
3.0 a
Density
High
2.7 a**
3.0 a
3.5 a
Low
1.9b
2.6 a
2.5 b
Two year summary i
* : Rating from 0 = disease free
to
5 = severely affected.
**
Duncan's multiple range test at 5% level.
51

Table 12: Yield means*
==============================================================================
1985
1986
Early/Late
1985/1986
Overall Overall
Treatment Early Late
Early
Late
1985
1986
Early
Late
1985
1986
Inbred
Early
2020a
930a
2090a
1080a
1470a
1590a
2100a 1020a
1470a
1590a
Late
1890a
930a
1450b
900a
1410a
1170b
1750b
920a
1410a
1170b
Dwarf
1430b
410b
1550b
710b
920b
1130b
1520b
570b
920b
1130b
Tall
2480a 1450a
1990a
1260a
1960a
1630a
2330a 1370a
1960a
1630a
Density
High
2090a
940a
1780a
900b
1470a
1340a
1960a
950a
1470a
1340b
Low
1900a
930a
1760a
1020a
1410a
1410a
1890a
990a
1410a
1410a
* Duncan's new multiple range test at 5% level.
52

Table 13: Average rainfall per day (mm. of water/day)
from planting to heading.
============================================================================
Early planting 1985
Late Plant. 1985
Early plant. 1986
Late plant. 1986
Early
Late
Early
Late
Early
Late
Early
Late
Inbreds
Inbreds
Inbreds
Inbreds
Inbreds
Inbreds
Inbreds
Inbreds
1.9
1. 98
8.5
3.78
2.73
2.88
3.65
3.2*
Season Average**
Season Average**
Season Average**
Season Average**
6.26/79 = 0.08
9.96/66 = 0.15
8.61/75 = 0.12
8.18/64 = 0.13
* Note: The late heading ( T223B & 23DB ) in the late planting in 1985
occured in the middle of a 13 day period of drought. A 0.25 mm rain on
September 20 and a 0.50 mm rain on September 21 after 6 dry days initiated
flowering of the late inbreds in late planting in 1986 and then followed
12 dry days before i t rained again.
In both cases i t was necessary to water
the field to avoid too much plant stress. The conditions were wetter in
the other six flowering situations.
** : From planting to late inbreds'heading.
53

The Yx1 interaction was significant (p < 0.03) for all traits
in
both planting
dates
(Tables
5
and
6)
except
for
head
number per plot in early plantings (Table 5).
This seems to
indicate
that
at
least
some
of
the
inbreds
show
a
differential phenotypic response due to environment.
The
1xD
interaction
(Tables
5
and
6)
was
only
significant for plant height (p = 0.0001), lOO-seed weight (p
= 0.03) and yield (p = 0.016) in early plantings (Table 5)
and for head number per plot (p = 0.0001) and total head seed
weight
(p = 0.0006)
in late plantings
(Table
6).
The main
effect showed the same tendency:
The inbred
(I)
effect
was significant for
4 out
of 8
traits in early plantings (Table 5) and for 6 out of 8 traits
in late plantings
(Table 6),
the plant number per plot was
not considered.
The density (D) effect was significant for 4 traits in
early plantings
and
for
only
2
traits
in
late
plantings
(Tables 5 and 6, respectively).
Three traits were dependent on plant population density
(Tables 3 through 6):
(1) Days to 50% heading:
Plants spaced 2.5 cm apart flowered
earlier than plants spaced 17 cm apart
( p < 0.006 for
all
analyses except
for
the
late plantings
across
the
years),
probably because of higher competition in the high population
density condition.
54

55
(2)
Head number
per plant:
plants
in low density
produced
. more heads
per
plant
or
more
tillers than
plants
in
high
density level (p = 0.0001 for all analyses), suggesting that
tiller number
in pearl
millet could
be controlled
through
plant spacing.
The closeness between plants in high density
conditions probably did not allow plants to produce
as much
tillers as they could otherwise.
(3) Total head seed weight: plants in low density conditions
produced higher total head seed weight than plants
in high
density (more competitive conditions),
(p < 0.04 for 7 out of
8
analyses).
This
shows
that
total
head
seed
weight
also
could be manipulated through plant spacing.
The density effect
(Tables 3 to 6) was significant in
only 4 out of 8 analyses (p = 0.005) for head length. This is
rather
surprising
because one
would expect
head length
to
follow the same pattern as total head seed weight.
The interaction
between planting date
or
season
(S),
inbred
(I),
and
plant
population
density
(D),
Sx1xD
interaction,
(Tables 3 & 4), was not significant at p = 0.05
for head number per plot,
total
head seed weight,
lOO-seed
weight,
and yield in
1985
(Table
3)
and
for
plant height,
days to
50% heading,
head number per plant and
total head
seed weight
in
1986
(Table
4).
When
non-signif icant,
the
Sx1xD interaction was used as
an error
term in F-tests for
main effects and lower level interactions.

56
The SxI interaction (Tables 5 & 6 ) was significant for
all traits (p < 0.03) except for yield (p = 0.20) in 1985 and
significant for plant height (p < 0.022), days to 50% heading
(p = 0.0005), head number per plot (p < 0.048), head length
(p < 0.03),
lOO-seed weight
(p = 0.0001) and yield
(p = 0.002) in 1986.
Plant populat ion
dens it y
tended
to buf fer
the
season
effects
and
the
SxD
interaction
(Tables
3
&
4)
was
not
s igni f icant
for
head
length
(p
=
0.89),
total
head
seed
weight
(p = 0.06) and yield (p = 0.42) in 1985 and for head
number per plot (p = 0.31), head number per plant (p = 0.66),
head length
(p = 0.41), total head seed weight (p = 0.90),
lOO-seed weight
(p = 0.50) and yield (p = 0.17) in 1986.
The IxD interaction (Tables 3 & 4) was significant
(p < 0.03) for all traits in 1985 except for head number per
plot (p = 0.47) and total head seed weight (p = 0.64), and in
1986 except for lOO-seed weight
(p = 0.57, Table 4).
The
consistency
of
signif icant
interactions
between
inbreds and plant population density
(IxD),
Tables 3 to 6,
for
the
head
number
per
plant,
except
for
the
combined
analyses
over
years
in
late
plantings,
shows
that
the
tillering ability of the inbreds is a trait that depends on
the plant population density to express itself. Whenever the
distance between
two plants
exceeded a
certain limit,
the
plants tended to fill in the blank space with tillers.
If the distance was
smaller than the limit,
very
few or no

57
tillers were produced. Early maturing inbreds (Tift 23BE and
Tift 23DBE) produced 50% more tillers than late inbreds (T23B
and
T23DB),
Table
9
Dwarf
inbreds
(T23DBE
and
T23DB)
produced 8% more tillers than tall inbreds (T23B and T23BE),
Table 9. The low plant population density produced 136% more
tillers
than
the
high
plant
population
densi ty,
Table
9.
Early
plantings
produced
41%
more
tillers
than
late
plantings, Table 10 and plants had 34% more tillers in 1985
than in 1986, Table 10.
The head length varied from a mean of 16.4 cm for Tift
23DB in the 1986
late planting to a mean value of 21.90 cm
for
Tift
23B
in the
1985
ear I y plant ing
The means
were
statistically different
but
the variation (2
to
5%
between
inbreds) was not agronomically important
(Tables 9 & 10).
The late maturing inbreds produced 14% more total head
seed
weight
on
the
average
than
early
inbreds.
The
dwarf
inbreds produced 54%
more
total
head
seed weight
than
the
tall
inbreds.
For
the
same
trait,
plants
in
low
densi ty
conditions were 19% higher than those in high density level.
The trait (total head seed weight) was 103% higher in early
than in late planting,
and 11% higher
in 1986
than in 1985
(Tables 9 & 10
).
The
hundred
seed
weight
was
not
dependent
on
plant
population density on the average,
but it was 20% higher in
early inbreds
than
in late
inbreds and 20% higher in dwarf
than in tall inbreds.
The trait was
21% higher in 1986

58
than in 1985 and only 2 % higher in the late plantings than
in early plantings (Tables 9 & 10).
Yield,
like
lOO-seed weight,
was
independent
of
the
plant population density and 20% higher for early lines than
for late maturing ones.
But, unlike lOO-seed weight,
yield
was 70% higher for tall inbreds versus dwarfs, 99% higher in
the early plantings than in late plantings and 5% higher in
1985 than in 1986 (Tables 9, 10, and 12).
Disease effects on plants
The
inbred
(I)
and
plant
population
density
(D)
interaction was
significant
in late planting
in 1986
(p
=
0.022,
Appendix
Table
37)
but
not
in
1985
(Table
7
)
for
pyricularia rating
.
For
the same
trait,
plant
population
density was significant
(p < 0.013)
in both late plantings
and the inbred effect was significant in late planting 1985
(p = 0.0001) but not in late planting 1986. Only the plant
population density effect was
significant (p = 0.0185)
for
the only rust rating taken in the 1985 late planting (Table
1).
In
the
1986
late
planting
i t
was
more
difficult
to
separate
rust
effect
from
pyricularia
effect
and
only
a
general leaf spot disease rating was taken in late September.
The IxD interaction was not significant for leaf spot disease
rating in both plantings in 1986 (Table 8). The inbred effect
and plant density effect were significant (p = 0.0001 and p
< 0.025 respectively) for leaf spot disease in both plantings

59
in 1986
(Table 8).
Data in this
table also showed that
the
season (8) and inbred (I) interaction and the DxS interaction
were not significant.
On
the
average,
early
inbreds
were
more
affected
by
pyricularia
and
leaf
spot
diseases
than
late
inbreds
but
plant height was not affected by the diseases.
Rust did not
affect inbreds differently
(Table 11,
top).
Plants
in high
population
density
were
always
more
affected
by
all
the
diseases
than
plants
in
low population density
(Table
11,
bottom).
This
was
probably
due
to
the
fact
that
high
population density provided more competitive and more humid
conditions
favorable
to
disease
development
than
did
low
plant density.
A2.
Discussion
This study involved four near-isogenic inbreds, that is,
inbreds
that
differ
only
by
a
few
genes,
namely
genes
affecting early and late maturity and those controlling the
plant height (dwarf or tall). Another factor under study was
plant population density (high density,
444 000 plants Iha,
and low density,
66 000 plants Iha).
The results showed that
maturity,
plant
height,
and
plant
spacing,
significantly
af f ected
the
head
number
per
plant,
the
total
head
seed
weight, lOO-seed weight and the yield,
even though most of
these
traits
are
quantitative
and
may
be
affected
by
environmental
conditions
especially
the
water
supply
that
varied during the
study
(Table 13).
But,
by using
a split

60
plot design
it was
possible
to
detect these
environmental
effects and remove them from the main effects.
In general,
the e1 gene,
controlling early maturity
in Tift 23BE and 23DBE,
caused plants to flower 25, 18,
26,
and 14 days earlier (p<O.OOOl) than plants without the gene
(Tift 23B and 23DB)
in early and late plantings in 1985 and
1986, respectively. This e1 gene caused plants to produce 50%
more tillers,
be
38% shorter,
produce
14%
less
total
head
seed weight,
seed 20% heavier and yield 20% higher than the
plants without
the gene.
The
d Z gene caused Tift 23DB and
23DBE to be 28.7, 61.6,
54.3, and 64.1 cm shorter (p<O.OOOl)
than Tift
23B and 23BE in early and late plantings in 1985
and 1986, respectively, and also caused the dwarfs to produce
8% more tillers,
54% more total head seed weight,
seeds 20%
heavier but yield 70% lower than the tall inbreds.
The high plant population density caused plants
to
flower
4,
1,
4,
and
2
days
ear lier
in
ear 1 y
and
late
plantings in 1985 and 1986, respectively,
than the low plant
population density
. Plants also were
6 cm,
16 cm and 8 cm
taller in early planting in 1985 and early and late planting
in
1986,
respectively.
The
low
plant
population
density
caused
plants
to
produce
136%
more
tillers,
and
19%
more
total
head
seed
weight
than
the
high
population
density.
Early plantings
(57
and
35 days
earlier
in 1985
and 1986,
respectively) caused the plants to flower 7 days later, be 39
cm shorter and produce 42% more tillers on average than late

61
plantings.
Plants
also produced
103% more
total
head
seed
weight and yielded 99% more in early than in late plantings.

62
Table 14. Differential effect of intrinsic and induced
.
maturity over both years.
============================================================
Tiller
Plant
Head seed
Seed
Yield
Factor*
number
height
weight
size
Intinsic maturity **
Early Inb.
50% +
38% shorter
20% +
20% +
Late
Inb.
taller
14% +
Induced maturity**
Early Plan.
42% +
40% shorter
103% +
same
99% +
Late Plan.
taller
same
* The
late planting was on the average
7 days earlier
than
the early planting.
Early inbreds were about 19 days earlier
than late inbreds.
Inb.
= Inbreds ; Plan. = Planting.
** Each value is the difference between inbreds or planting
dates,
expressed as the % of the smaller value.

63
Data in
Table 14
above
showed
that
intrinsic
late
maturity,
due to the absence of the e1 gene,
caused 19 days
later inbreds to produce 14% more total head seed weight than
early inbreds.
Therefore,
7
days
induced
late maturity
in
early plantings cannot account for the 103% increase in total
head seed weight
as compared to
late plantings.
For tiller
number,
plant
height,
and
yield
the
effects
of
early
plantings
(with their
late maturity inducing ability)
were
opposed
to
the
effects
of
the
intrinsic
late
maturity
in
inbreds. Consequently, the causes of the different effects of
early and
late plantings
on plant
characteristics must
be
found elsewhere
than in induced differential maturity.
The
various environmental conditions surrounding
plants during
each
growth
season
are
probably
the
main
causes
of
the
differential responses in early and late plantings. Data in
Table
13,
for
example,
showed
a
net
difference
in
daily
rainfall between early and late seasons separated by 56 days
in 1985.
Among these environmental
factors,
diseases which
manifested themselves by their
absence
in early plantings,
their presence
in late
plantings,
and
their
severity,
may
have contributed more to the differences between seasons than
other external influences (temperature, moisture etc) which
only varied quantitatively from one season to the other.
But
this seemed not to be the case in this study (see p.68). Data
in Table 11 showed that early maturing inbreds averaged 36%
higher disease ratings than late inbreds and that plants in

64
high population density had 31% higher disease ratings than
plants in low density conditions. No significant differences
were found between dwarf and tall inbreds in their responses
to diseases.
To determine the disease impact on plant growth and
production,
the performances of early and late inbreds were
compared in early planting (disease-free condition) and late
planting
(diseased
condition),
respectively,
(Table
15).
Also, high and low density plants were compared in disease-
free and diseased conditions,
respectively,
(Table 16).

65
Table 15. Disease effect on inbreds over both years of
. study.
===========================================================
Tiller
Plant
Head seed
Seed
number
height
weight
size
Yield
Disease free Early Plantings**
Inbreds
Early
64% +
21% +
20% +
Late
38% +
15% +
Diseased Late Plantings**
Inbreds
Early
38% +
38% +
11% +
Late
34% +
14% +
*: Early inbreds had 36% higher disease ratings than late
late inbreds .
**: Each value is the difference between inbreds expressed
as the % of the smaller value.

66
Data in Table 15 compared early and late inbreds and
showed that
from
disease-free
to diseased
conditions,
the
advantage of higher disease rating early inbreds over
late
inbreds in tiller number per plant and yield, was decreased
by 31% and
9%,
respectively,
while
their advantage in seed
size was increased by 17%. On the other hand,
the advantage
of lower disease
rating late
inbreds over early inbreds
in
plant height was decreased by 4%. The total head seed weight
was not affected by diseases.
Data in Table 16 showed that from disease-free (early
planting)
to
diseased
(late
planting)
conditions,
the
advantage of lower disease rating plants (low density) over
higher
disease
rating
plants
(high
density)
in
producing
tillers was increased
by 142%, while their advantage in seed
size was decreased by 9% (from +5% to -4%).
The advantage of
high density plants was decraesed by 9%
(from 12 to 3%) for plant height and also by 9%
(from +4% to
-5%) for yield.
Here again,
the total head seed weight was
not affected by the diseases.
So, intrinsic susceptibility to disease (early inbreds)
and induced susceptibility (high population density) produced
similar effects on tillering ability, seed size and yield in
diseased conditions
but
opposite
effects on
plant
height:
disease susceptibility reduced yield and tillers number per
plant, but increased seed size in both early inbreds and high

67
densi ty plants.
Disease
susceptibility tended
to
increase
plant height in inbreds and to decrease plant height in high
population
density
conditions,
probably
due
to
the
competition effect.

68
Table 16. Disease effect on plant population density over
.
both years of study.
============================================================
Tiller
Plant
Head seed
Seed
number
height
weight
size
Yield
Disease free Early Plantings**
High Density
12% +
4% +
Low Density
100% +
21% +
5% +
Diseased Late Plantings**
High Density
3% +
4% +
Low
Density
242%
+
21% +
5%
*:
Plants in high population density were 31% more
susceptible to diseases than in low density conditions.
**:
Each value is the difference between levels of density
expressed as the % of the smaller value.

69
Then,
the advantage of disease-free early planting
over disease
prone late
planting in producing tillers
and
yield
(Table 14)
was
due
(at
least partly)
to
the disease
impact on late planting.
The comparison of
the percentages
from Table
14 to
Tables 15
and 16
showed
that
the
ear 1 y
planting had some advantages of
its own over
late planting
that
could
not
be
attributed
to
disease
effect
on
late
planting. In particular, the yield increase in early planting
was about
10 times more
important
than the disease effect,
and the 103% increase in total head seed weight was totally
independent of
disease
effect.
The differences
in weather
conditions
(temperature,
relative
humidity,
precipitation
etc.) account more
for
the differences
registered in plant
characteristics
from
early
to
late
plantings
than
the
diseases studied (rust and pyricularia).
Nonetheless, early
planting did decrease (early planting 1986) or totally escape
(early planting 1985)
the yield loss
due to diseases.
The
best conditions to study the plants'
ability to escape yield
lost
due
to
diseases
would
be
the
use
of
resistant
and
susceptible cultivars and planting early enough (such as in
1985)
to
have
an
ear 1 y
growing
season
free
of
disease
pressure.

B) PLANT BREEDING / GENETIC STUDIES
Bl.
Results
Data in Tables 17,
18,
and 19,
on the
following pages
reported the heterosis values for flowering (maturity), head
length, and hundred seed weight (seed size), respectively, in
1987, based on original data.
The
mid-parent
heterosis
for
flowering,
(Table
17,),
ranged from -15% (cross 15) to 9% (cross 7) with an average
of -3%, showing that, on the average, the hybrid was a little
earlier than the mid-parent. The high-parent
heterosis had negative values in all 3 crosses studied
with an average of -19% meaning that the hybrid was
always earlier than the late parent.
Table 17 : Heterosis for Days to flowering in 1987.
=======================================================
Mid-parent
High-parent
Level of
Cross
heterosis
heterosis
dominance
( 3 ) Late Gero
-3%
-17%
Early > Late
x Early Walor
( 7 ) Early T18BE
9%
-12%
Late
> Early
x Late T23B
(15) Early Togo
-15%
-29%
Early > Late
x Late Gero
Jinks' heterosis was not estimated for maturity because in
no case was the hybrid earlier than the early parent.

Table 18 : Heterosis for head length in 1987.
==========================================================
Mid-parent
High-parent
Level of
Cross
heterosis
heterosis
dominance
----------------------------------------------------------(1)
LH Gero
-5%
-33%
short head > long head
x SH T23DBE
( 3 ) LH Gero
68%
24%
overdominance
x SH Walor
ga
over long head
( 4 ) LH Gero
22%
5%
Overdominance
x SH Walor
2a
over long head
( 7 ) LH T18BE
7%
-25%
long head > short head
x SH T23B
LH = long head i SH = short head
a
= Jinks' heterosis value
For head length, the mid-parent heterosis ranged from
-5% (Table 18, cross 1) to 68% (cross 4) with an average
of 23%.
This indicated that
the hybrid had a longer
head
than the mid-parent
in general.
The
high-parent
heterosis
ranged
from
-33%
to
24%
with
an
average
of
-7%,
and
therefore, the hybrid on the average had a shorter head
than the high-parent.
Jinks'
heterosis
for
head
length
(Table
18)
was
determined
for
crosses
3
and
4
with
9
and
2
values,
respectively.
Seed size or hundred seed weight (Table 19) showed
higher mid-parent heterosis mean than did maturity and
head length (Tables 17, and 18, respectively).
Cross 9 involving large-seeded Togo and large-seeded
Walor as parents showed overdominance.
71

72
Table 19 : Heterosis for hundred seed weight in 1987
========================================================
Mid-parent
High-parent
Level of
Cross
heterosis
hterosis
dominance
(9) LS Togo
22%
Walor »
Togo
x LS Walor
(13) LS Togo
30%
-28%
LS
>
SS
x SS T23DBE
LS = large seed ; MS = mid size seed; SS = small seed.
a
= Jinks' heterosis value; » = overdominance.
The seed size mean mid-parent heterosis for
crosses 9
and 13 was 26%.
The hybrid had larger seeds than the
mid-
parent.
The
mean
high-parent
heterosis
was
-11%.
This
indicated that the hybrid had smaller seeds than the high-
parent in both crosses.
Jinks' heterosis for seed size was 0.1 in cross 9 where
overdominance was detected.
Broad sense
heritability
(H2 ) values
for
each of
the
selected crosses are summarized in Table 20.
For maturity,
the values ranged from 29% to 98% with an overall mean of
65%. The range was 39% to 81% with a general mean of 58% for
headlength, and i t was 52% to 93% with a mean of 74% for 100-
seed
weight
or
seed
size.
For
each
trait,
was
also
computed using the mean variances of the families across all
the crosses studied, and the values (listed as
'Total', in Table 20 ), were 51%, 60%, and 81% for maturity,
headlength, and seed size,respectively.

73
Table 20 :Broad sense heritability for the traits (%)
======================================================
Maturity
Headlength
lOO-seed weight
Cross
n*
Range
Mean
Range
Mean
Range
Mean
(1 )
6
64 - 81
73
(3)
6/4
29 -
64
43
50 -
71
59
(4 )
2
39 -
51
45
( 7 )
5
98 -
98
98
46 -
61
55
(9 )
5
52 - 64
61
(13)
6
75 -
93
87
(15)
6
47 -
66
55
Mean
17/15/11
65
58
74
Total 17/15/11
51**
60**
81**
* : n is the number of F2s analysed per cross; for cross (3),
n = 6 for maturity, and n = 4 for headlength.
** : Computed from the means of variances.
Frequency
distributions
were
plotted
to
show
the
variation of
the traits
( Figures
1,
2,
and 3
).
Cross
7
between the inbred lines late T23B and early T18BE,
showed
two classes for maturity (Figure i-B),
confirming that the
trait is controlled by a single gene with late being dominant
over early
(Burton,
1981,
and Hanna
and Burton,
1985a)
in
these inbreds. However, even in these inbreds maturity seemed
to be affected by environmental effects because the observed
two classes in Figure 1-B were not distinct.

74
10147-1
P2
F'1
P1
50
80
70
80
10147-2
40
F'1
Pl
30
t
0
5 20
loJ
e:
10
0J5 39 4J
47
51
55
59
63
57
10147-3
35
P2
F'1
Pl
30
25
ti3 20
;:)
0
w
15
e:
10
5
0
40
50
70
DAYS
Figure lA: Cross 3: Maturity (Days)

75
101~0-2
50
Fl
Pl
P2
50
~ 4{)
z
w
::::l
~O
0
w
a:
L...
20
10
0
30
1015O-~
50
Pl
Fl
P2
50
~ 4{)
z
w
5 30
w
e: 20
10
0
~O
70
80
10150-04-
50
Pl
Fl
P2
40
~ JO
z
W
:J
a
w
e: 20
10
0
JO
DAYS
Figure lB: Cross 7: Maturity (Days)

76
10150-5
5 0 . . . - - - - - - - - - - - - - - - - - - - ,
P1
Fl
P2
~ JO
o
::>
o
w
e: 20
10
O+--~""'f'i'
JO
80
101~-8
50,..-------------------,
P1
F1
P2
~ JO
o
::>
o
w
e: 20
10
80
Figure IB: Cross 7: Maturity (Days)

77
10159-3
P1 F1
P2
JO
10
O'+---~~
30
70
80
10159-<4-
P1 F1
P2
t;
;3 20
:J
C1
w
E
10
o.!-_.J::~~~~
JO
70
80
Figure 1C: Cross 15: Maturity (Days)

78
10104-5-1
5 0 . . . - - - - - - - - - - - - - - - - - - - - - - ,
P2
Fl
P1
~ 30
loJ
::J
o
E20
10
cm 50
10145-2
5 0 - r - - - - - - - - - - - - - - - - - - - - ,
P2
f1
P1
~ JO
i3
::J
o
loJ
E 20
10
cm
50
50.,....-------------------,
1014S-3
P2
f1
P1
cm
50
Figure 2A:
Cross 1: Head Length
(cm)

79
lal~--4-
50.,......-------~--------_,
P2
F'1
P1
~ ':'0
i3
:::l
o
w
e: 20
10
O+-...u..~
10
cm
50
101~-5
P1
50
F'1
~
z
~ ;'0
o
W
0::
~ 20
10
em
50
Figure 2A: Cross 1: Head Length
(cm)

80
10147-1
J O , . . . - - - - - - - ' - - - - - - - - - - - - ,
Pl
r10
015
~
~
'!4
~
815
cm 7:l
'0141-1
~
P"1
",
n
20
S
~ 10
0
10
2D
:I)
40
50
10""'
10147-4
1'2
"1
n
JO
IM
10
:t5
J!I
46
ea
""' III
10147-6
.30
PI
Pt
n
23
0 20
;
15
to
5
Figure 2B: Cross 3: Head Length (cm)

81
1~.,...--
....;1...;;,O...;.'48...;.;;...-_'~
-----r
P2
Pl Fl
30.,...--
';..;0....;'..;.48..;..-_2"""--
--,
P2
P'
Fl
o 10"7'nI
la
20
cm
50
Figure 2C: Cross 4: Head Length (cm)

82
10150-2
P2
F1
P1
~ 30
z
UJ
::>
S 20
E
10
,/,
oU~~_~~""""
J
cm
50
10
20
10150-4
P2
Ft
P1
~ 30
15
~ ~~
::>
S 20
;I.
e:
10
bo'l
~
rh
~
Y"A.,...,..,7n
oto
20
30
cm
50
10150-5
P2
Fl
P1
~ JO
i5
:::l
0
LoJ
20
e:
to
0
10
20
;'0
-«J
cm
50
Figure 2D:
Cross 7: Head Length
(cm)

83
1015,3-1
JO~------------------,
P1
P2 F1
1015:5-2
P1
P2
Fl
25
t; 20
ai
~l~LJ&J
L...
10
5
100
150
200
101503-03
30~-------------------,
P2 F1
25
b 20
i5
~ 15
o
lAJ
e: 10
0+------'"
~O
100
1~0
200
Figure 3A: Cross 9: Seed Size (x 10-2 /100 seeds)

84
10153-4
JO
Pl
P2
Fl
25
t; 20
i5
:J
15
o
w
~~ ~ ~
~ ~
~
~
E 10
~~~
~
~ ~
~
5
~
WhV-0
~
~
".-'
V//M
o50
100
150
200
101~-5
Pl
P2 Fl
30
~?'
t;
~~
z
~ 20
8
e:
'//A-J
10
P77/;
~ ~ :;/,~~
Wh1
~
o50
100
1~
200
Figure 3A: Cross 9: Seed Size (x 10-2 /100 seeds)

85
101~8-1
P2
Pl
Fl
~ :30
Ci
:::l
S 20
E
10
010
eo
110
160
10158-2
P2
Pl
F1
~ 30
z
w
:::l
S 20
e:
10
010
80
110
160
101~8-3
P2
Pl
Fl
~ 30
i5
:::l
S 20
E
10
180
Figure 3B: Cross 13: Seed Size (x 10-2 /100 seeds)

86
10158-~
P2
PI
Fl
JO
t
zw
::l
8 20
e:
10
0
10
60
110
160
10158-5
P2
Pl
Fl
~ :30
i5
::l
8 20
e:
10
0
10
60
110
160
10158-6
P2
Pl
Fl
~30
i5
::l
820
e:
10
0
10
Figure 3B: Cross 13: Seed Size (x 10-2 /100 seeds)

87
The
frequency distribution of maturity revealed continuous
variation
in
crosses
3
and
15.
Headlength
and
seed
size
showed a
continuous
variation with a
tendency for
skew
to
larger seed size (Figures 2, and 3).
Table 21: Gene number per trait in 1987 as estimated
through direct calculation.
==========================================================
Days to flowering
Head length
Hundred seed weight
gene number
gene number
gene number
cross range
mean
cross range
mean
cross range
mean
----------------------------------------------------------(3)
3 -
25
12
(1)
3 -
10
6
(9)
1
1
( 7 )
1
1
( 3)
2 -
11
6
(13)
1 -
2
1
(15)
4 -
41
14
(4)
1 -
5
2
Total 1 -
2
1
Total 3 -
41
9
(7)
6 -
11
8
Total
1 -
11
6
The data on the determination of the number of loci
controlling each trait were summarized in Table 21.
The
number of loci was calculated for each
single
F2
population of a cross. All F2s of a cross were also
pooled.
The number of F2s in each cross varied from 5 to
6 giving a range of 6 to 7 values including the pooled
F2s for the 1987 data.
Single F2 estimations of the number of genes controlling
maturity ranged from 3 to 25 and 4 to 41 for
crosses between late Gero and early Walor, and between early
Togo and late Gero, respectively.

88
Seed size appeared to be controlled by fewer genes (1 to
2)
than maturity
and
head
length,
but
there
were
only
2
crosses studied
for seed
size compared
to
3 &
4 for
the
other traits, respectively.
Determination of the number of genes per trait
through the use of the Chi-square test resulted in ratios
in Tables 22 (1987) and 23 (1986). These ratios are based
on the assumption that epistasis is operating to express
each trait. When at least two loci contribute in the
expression of one trait, there must necessarily be an
interaction between the two or more loci. The interaction
can be additive,
(each allele in every locus adding a
constant specific value to the expression of the trait),
or epistatic (one or more alleles from one locus interfering
with the expressions
of the allele(s)
of another locus
).
There may also be dominance between alleles at any locus.
When the additive interaction is predominant the trait
is continuous and no distinctive classes can be observed
in the F2 distribution. When epistatic gene action is
operating in a
poly-factorial trait with independent loci,
then the distinction between
classes can be made according
to the formulas
given by Stansfield,
(1983,
pp.
53 & 54),
and the chi-square test be applied.
When true dominance operates, i t will be in association
with either additive gene action or epistasis, or both, but
never alone to express a quantitative trait.

89
In reality, a given quantitative trait may depend
simultaneously on additive, dominant and epistatic gene
actions.
Also,
the
expression of
a
quanti tati ve
trait
may
be
influenced by environmental effects and this makes it more
difficult to determine the genetics of the trait,
for when
environment effects are in play, the variation is continuous
whether the trait is controlled by one or more genes.
Maturity
in
pearl
millet
is
controlled
mainly
by
dominant and non-additive gene actions (Burton, 1951; Sagar
et al., 1985) while both additive and non-additive components
control
flowering
and
head
length
(Upadhyay
and
Murty,
1971).
Grain size was reported to
be a
quantitative
trait
mainly under the control of additive and additive by dominant
gene actions and greatly influenced by environmental factors
(Phul and Atwal, 1969; Hash, 1986).
The chi-square ratios reported here are only an
approximation of the extreme case where epistasis only is
operating. For two loci controlling a trait, epistatic
gene action can yield ratios like 15:1, 13:3, 12:3:1,
9:7, 9:6:1, and 9:3:4,
in an F2 in the case of complete
dominance at each independent locus. With co-dominance at
one or two loci, and assuming that a heterozygote can
have an
epistatic
effect of
its own,
ratios
such as
7: 1,
11: 5,
and
1: 1
are
also
possible
in
an
F2
distribution,
(adapted from Stansfield, 1983).

90
Table 22:
Chi-square tests
for Maturity in 1987
==========================================================
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants Chi-square Values
X2
culation
Cross(3)
Early Late
Ratiol
Rati02
N
F2
63:1
255:1
10147 - 1
97
10
42.1**
220.5**
?
3
10147 - 2
107
1
0.29
0.80
3;
4
8
10147 -
3
94
5
0.24
55.3**
3
6
10147 - 4
137
o
2.18
0.54
3;
4
25
10147 -
5
115
o
1.83
0.45
3;
4
25
10147 -
6
120
1
0.43
0.59
3;
4
12
Pooled
670
17
3.72
77.0**
3
8
5 D.F. Homogeneity X2 for 63:1
43.4**
1
I
5 D.F.
Homogeneity X2 for
255:1 201.2**1
Cross(7) Late Early
Ratiol Rati02 Rati03
N
F2
3:1
13:3
54:10
10150 - 2 180
23
20.2**
7.3**
2.84
3
1
10150 -
3 146
45
0.21
2.90
9.1**
1;
2
1
10150 - 4 158
37
3.78
0.01
1.66
1;
2;
3
1
10150 -
5 146
29
6.6*
0.55
0.12
2;
3
1
10150 -
6 118
43
0.25
6.7** 15.0**
1
1
Pooled
748
177
17.0**
0.09
8.7**
2
1
4 D.F.
Homogeneity X2 for
3:1
4 D.F.
Homogeneity X2 for
13:3
17.4**
4 D.F.
Homogeneity X2 for
54:10 20.1**
*: Cri-square (X2) significant at p = 0.05
**: X significant at p = 0.01; ns = nonsignificant X2•

91
Table
22:
Chi-square
tests
for
Maturity
in 1987
(End)
----------------------------------------------------------
----------------------------------------------------------
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chi-square
Values
X2
culation
Cross(7) Late Early Ratiol Ratio2
Ratio3
X2
BC(l)
3:1
13:3
54:10
10166 - 1 124
35
0.76
1.11
4.9*
2;
3
10166 - 2 165
21 18.7**
6.8**
2.65
?
10166 -
3
69
14
2.93
1. 93
0.10
2;
3
Pooled
358
70 17.0**
1. 61
0.17
?
2 D.F. Homogeneity x2 for 3:1
5.3ns
2 D.F. Homogeneity X2 for 13:3
8.2*
2 D.F. Homogeneity x2 for 54:10
7.5*
Cross(15) Early Late Ratiol
Ratio2 Ratio3
N
F2
7:1
54:10
225:31
10159 - 1
146
19
0.15
2.11
0.06
2;
3; 4
14
10159 - 2
145
23
0.22
0.48
0.40
2; 3; 4
10
10159 -
3
127
11
2.59
6.1*
2.22
2; 4
7
10159 - 4
123
21
0.57
0.12
0.83
2; 3;
4
4
10159 - 5
174
2 20.8**
28.0**
20.0**
?
41
10159 -
6
139
11
3.66
7.8**
3.22
2; 4
?
Pooled
854
87
9.1**
29.1**
7.3**
?
6
5 D.F.
Homogeneity x2 for 7:1
18.9**1
5 D.F.
Homogeneity x2 for 54:10
15.6* 11
I
5 D.F.
Homogeneity x2 for 225:31
19.4**1
I
*: cri-square (X2) significant at p = 0.05
**: X significant at p = 0.01; ns - nonsignificant x2•

92
Table 22:
Chi-square
tests
for Headlength in 1987
----------------------------------------------------------
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants Chi-square
Values
X2
culation
------------------------------------------ ---------------
Cross(l)
SH
LH
Ratio 1
Ratio 2
X2
N
F2
63:1
243:13
10145 -
1 174
2
0.21
5.7*
3
4
10145 -
2 148
6
5.5*
0.45
4
7
10145 -
3 161
5
2.27
1. 47
I 4
6
10145 -
4 190
5
1. 27
2.56
3; 4
5
10145 -
5 173
14
42.7**
2.25
4
3
10145 -
6 143
5
3.17
0.89
I 4
10
Pooled
989
37
27.9**
4.6*
?
5
5 D.F. Homogeneity X2 for 63:1
27.2**
5 D.F. Homogeneity X2 for 243:13
8.7ns
:1
Cross(l)
SH
LH
Ratio 1
Ratio 2
X2
BC(l)
7:1
13:3
10162 -
1 88
7
2.29
8.1**
3
10162 -
2 92
27
11.3**
1.21
?
Pooled
180
34
2.25
1.15
3
1 D.F. Homogeneity
X2 for 7:1
11.3**
I,
1
Homogeneity
X2
D.F.
for 13:3
8.1**
I,
LH = Longhead
SH = Shorthead
*: cri-square (X2) significant at p = 0.05
**: X significant at p = 0.01; ns = nonsignificant X2.

93
Table
22:
Chi-square
tests
for
Headlength
in
1987
(Cont.)
----------------------------------------------------------
----------------------------------------------------------
Ratios with
non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants Chi-square
Values
X2
culation
---------------------------~--------------
---------------
Cross(3)
LH
SH
Ratio 1
Ratio 2
X2
N
F2
63:1
255:1
10147 - 1 106
1
0.27
0.81
I 4
2
10147 -
2 107
1
0.29
0.80
3-I 4
4
10147 - 3
99
0
1.57
0.39
3; 4
9
10147 -
4 137
0
2.18
0.54
3; 4
4
10147 -
5 114
1
0.36
0.68
3; 4
5
10147 -
6 121
0
1. 92
0.48
3; 4
11
Pooled
684
3
5.7
0.04
4
4
5 D.F.
Homogeneity
X2 for 63:1
0.9ns
'I
Homogeneity
X2
5 D.F.
for 255:1 3.7ns
I
Cross(3)
LH
SH
Ratio 1
X2
BC(2)
63:1
10164 -
1 118
2
0.01
?
10164 - 2 123
2
0.00
?
10164 - 3 109
2
0.04
?
10165 -
1 128
0
2.03
?
10165 -
2 122
1
0.45
?
10165 - 3 122
1
0.45
?
Pooled
722
8
2.60
?
5 D.F.
Homogeneity
X2 for 63:1
0. 38ns lI
--------------------------------------------------------
LH = Longhead
SH = Shorthead
*: Cri-square (X2) significant at p = 0.05
**: X significant at p = 0.01; ns = nonsignificant X2 •

94
Table
22:
Chi-square
tests
for
Headlength
in
1987
(Cont.)
----------------------------------------------------------
----------------------------------------------------------
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chi-square
Values
X2
culation
------------------------------------------ ---------------
Cross(4)
LH
SH
Ratio 1
Ratio 2
X2
N
F2
7:1
55:9
10148 -
1
67
9
0.03
0.31
2', 3
1
10148 - 2 114
9
3.02
4.68
2', 3
1
10148 -
3 114
4
9.0**
11.1**
?
5
10148 -
4
98
12
0.26
0.91
2', 3
2
10148 -
5 103
22
2.97
1. 30
2', 3
2
10148 - 6 110
27
6.58*
3.61
3
3
Pooled
606
83
0.13
2.32
2;
3
2
5 D.F. Homogeneity
x2 for
7:1
21.6**
I,
Homogeneity
X2
5 D.F.
for 55:9
19.6**
I
Cross(4)
LH
SH
Ratio 1
Ratio 2
X2
BC(2)
63:1
243:13
10168 -
1 114
2
0.02
2.71
?
LH = Longhead
SH = Shorthead
*: Cri-square (X2) significant at p = 0.05
**: X significant at p = 0.01; ns = nonsignificant X2.

95
Table 22: Chi-square tests for Headlength in 1987 (End)
========================================================
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants Chi-square
Values
X2
culation
Cross(7)
LH
SH
Ratiol Rati02
Rati03
N
F2
15:1
63:1
243:13
10150 - 2 179
24
10.8** 139.0** 19.2**
?
6
10150 - 3 194
o 12.9**
3.08
10.4**
3
11
10150 - 4 185
10
0.42
16.1**
0.01
2; 4
6
10150 - 5 166
9
0.37
14.6**
0.02
2; 4
6
10150 - 6 160
1
8.7**
0.93
6.6*
3
9
Pooled
884
44
3.6161.0**
0.22
2;
4
9
4 D.F. Homogeneity
X2 for 15:1
29.6**1
I
4 D.F. Homogeneity
X2 for 63:1
112.7**1
I
4 D.F. Homogeneity
X2 for 243: 13
34.0**1
Cross(7)
LH
SH
Ratiol
Rati02 Rati03
BC(2)
3:1
7:1
55:9
10167 - 1 154
40
2.00
11.7**
6.9**
2; 3
10167 - 2 139
20
13.1**
0.01
0.29
3
10167 - 3 110
10
17.8**
1.90
3.26
3
10167 - 4 130
1
41.0**
16.5*8 19.2**
?
Pooled
533
71
56.5**
0.31
2.66
3
3 D.F. Homogeneity
X2 for 3:1
17.4**
3 D.F. Homogeneity
X2 for 7:1
29.8**
3 D.F. Homogeneity
~ for
55:9 27.0**
LH = Longhead
rH = Shorthe ad
*: Cri-square (X) significant at p = 0.05
**: X significant at p = 0.01; ns = nonsignificant X2 .

96
Table 22:
Chi-square tests
for Seed Size in 1987
----------------------------------------------------------
----------------------------------------------------------
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants Chi-square
Values
X2
culation
Cross(9) Walor Togo
Ratiol Rati02
Rati03
N
F2
3:1
13:3
54:10
10153 - 1
84
11
8.9**
3.21
1.18
2; 3
1
10153 - 2
87
40
2.86
13.4**
24.3**
1
1
10153 - 3
90
24
0.45
0.40
2.55
1; 2; 3
1
10153 - 4
72
18
1.20
0.09
1.31
1; 2;
3
1
10153 - 5 123
18
11.3**
3.31
0.87
2;
3
1
Pooled
456
111
8.9**
0.25
6.7**
2
1
4 D.F. Homogeneity
X2
for 3:1
15.8**
4 D.F. Homogeneity
X2
for 13:3 20.3**
4 D.F. Homogeneity
X2 for 54:10 23.5**
Cross(13)
LS
SS
Ratio 1
Ratio 2
N
F2
7:1
15:1
10158 - 1
127
4
10.7**
2.28
2
2
10158 - 2
140
19
0.04
9.8**
2
1
10158 - 3
158
18
0.83
4.8*
2
1
10158 - 4
153
8
8.4**
0.45
2
1
10158 - 5
169
13
4.8*
0.25
2
1

97
Table 22:
Chi -square
tests
for
Seed
Size
in 1987
(End)
----------------------------------------------------------
----------------------------------------------------------
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants Chi-square
Values
X2
cUlation
Cross(13)
LS
SS
Ratio 1
Ratio 2
N
F2
7:1
15:1
10158 - 6
112
20
0.85
17.9**
2
1
Pooled
859
82
12.3**
9.8**
?
1
5 D.F.
Homogeneity
X2 for
7:1
13.2*
I
5 D.F.
Homogeneity
X2 for 15:1
25.6**
,I
Cross(13)
LS
SS
Ratio 1
Ratio 2
BC(2)
3:1
7:1
10181 - 1
121
16
13.0**
0.08
3
10181 - 2
5
4
1. 81
8.4**
2;
3
10181 - 3
128
22
8.6**
0.64
3
Pooled
254
42
18.5**
0.77
3
2 D.F. Homogeneity
X2 for 3:1
4.9ns
2 n.F. Homogeneity
X2 for
7:1
8.4*
LS = Large Seed;
SS = Small Seed .
*: Cri-square (X2) significant at p = 0.05
**: X significant at p = 0.01; ns = nonsignificant X2•

98
Table 23:
Chi-square
tests
for Headlength
in 1986
----------------------------------------------------------
----------------------------------------------------------
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chi-square
Values
X2
culation
Cross(l)
SH
LH
Ratio 1
Ratio 2
N
F2
63:1
255:1
9804
79
o
1.25
0.31
3;
4
3
Cross(l)
SH
LH
Ratio 1
Ratio 2
BC(2)
63:1
255:1
9801
119
o
1.89
0.47
?
Cross(2)
SH
LH
Ratio 1
Ratio 2
N
F2
63:1
255:1
9805
78
o
1. 24
0.31
3;
4
4
Cross(2)
SH
LH
Ratio 1
Ratio 2
BC(2)
63:1
255:1
9802
79
o
1. 25
0.31
?
Cross(3)
SH
LH
Ratiol Rati02 Rati03
N
F2
15:1
63:1
255:1
9806
78
1
3.35
0.05
1. 56
2;
3;
4
2
Cross(3)
SH
LH
Ratio 1
Ratio 2
BC(l)
63:1
255:1
9803
116
o
1.84
0.46
?
LH = Longhead;
SH = Shorthead.
*: Chi-square (X2) significant at p = 0.05
**: X2 significant at p = 0.01; ns = nonsignificant X2 •

99
Data
in
Table
24
showed
the
backcross
(BC)
ratios
expected from different F2 ratios as adapted from Stansfield,
1983.
Data in Table 22 listed chi-square ratios for maturity,
head length, and seed size from 1987 data.
For each trait
Table 24 : F2 and Backcross ratios.
========================================================
a.
Two loci controlling a trait
F2
15:1
13:3
11:5
9:7
7:1
5:3
3:1
1:1
BC
3:1
3:1
1:1
1:3
3:1
1:1
1:1
3:1
b. Three loci controlling a trait
F2
63:1
60:4 or 15:1
60:3
57:7
55:9
49:15
45:19
BC
7:1
3:1
6:1
5:3
5:3
3:5
3:5
F2
37:27
27:37
54:10 or 27:5
BC
5:3
1:7
1:1
C.
Four loci controlling a trait
F2
255:1
243:13
225:31 etc,etc.
BC
15:1
11:5
9:7
Adapted from Stansfield, 1983.
the ratios varied within crosses and between crosses.
When
available, the corresponding backcrosses did not confirm the
F2 ratios.
In 1987, some of the backcrosses were made using
stored pollen without testing its viability. A number of the
putative BCs may have been F2s because of nonviable inbred
pollen. But this hypothesis cannot be entirely true, because
backcrosses
made
in the
greenhouse
in winter
using
fresh

100
pollen and grown in summer 1986 also gave similar BC ratios
as in 1987 for head length (Table 23). Also, most BCs in 1987
had an inbred female parent and a male hybrid parent (Table
32).
Another
explaination
would
be
that
the
'mostly'
epistatic gene action assumption under which the chi-square
test was made may not be true for some crosses,
especially
because additive gene action was also reported for the three
traits
of
concern
here.
There
may
have
also
been
some
problems associated with the classification of the F2 progeny
for the test. One of the problems was that
sometimes the F2 did not cover the recessive parent mean,
giving a
zero value to the recessive class.
In other cases
the putative recessive class was large (this is when the
recessive parent mean was found close to the center,
rather than close to one end,
of the F2 distribution), but
this may just have been the effect of epistatic gene action
(1:1/ 9:7 or 27:37 for example).
Comparing tables D8 & D9 to Dl0, the following analysis
of the results can be made:
a.Maturity (days to flowering) study in 1987.
Parents : Togo, T18BE, and Walor are early;
Gero, and T23B are late.
The gene number varied from 3 to 25 with an average of
12/
for
cross
3
(Table
22) /
between
late
Gero
and
early
Walor, meaning not necessarily that the trait is controlled

101
by 12 loci but that at least three loci are
involved,
and
therefore, the chi-square ratios 63:1 and 255:1 which showed
perfect homogeneity may both be possible. Since the backcross
over
the
recessive Gero
was
not
available,
neither
ratio
could be confirmed.
The calculated gene number for maturity in cross 7
between early T18BE and late
T23B,
(Table 22),
was 1.
The
corresponding 3:1 F2 ratio was found in three replications
out of four but was not supported by the backcross ratio.
Cross 15 between
early short head
Togo and late
long
head Gero, gave very high calculated gene numbers (4 to 41)
with an average of 14 in 1987
(Table 21, cross 15). A wide
range of F2 ratios was also recorded: 13:3, and 14:2 or 7:1
for 2 loci,
55:9, 54:10 or 27:5,
60:3, and 63:1 for 3 loci,
and 225:31, 243:13, and 255:1 for 4 loci. The most frequent
ratios
were
7: 1,
225: 31
and
27: 5.
No
backcross
data were
available
to
support
the
F2
ratios.
There
seems
to
be
a
conflict between the two methods of gene number determination
here. The chi-square test suggests a minimum
of 2 genes, while the direct calculation supports a minimum
of 4.
b. Head length study in 1987 and in 1986.
Parents : Gero, and T18BE are long headed;
Walor has small to mid-size heads;
T23B, and T23DBE are short-headed.
Cross 1 between Gero long head and T23DBE gave a

102
calculated gene number
(n)
of
3 to 10 with a mean of 6 in
1987
(Tables
21
and
22).
The
three
pairs
of
F2 and BC
families of the same cross grown in 1986 (Table 23 crosses 1,
2, & 3) yielded n = 3, 4, and 2; with a mean of 3 genes. It
can, therefore, be concluded that head length was controlled
by at least 2 loci in that cross. The chi-square ratio 243:13
was more frequent and homogeneous
in 1987,
but i t was
not
supported by the observation of its expected BC ratio 11:6.
The
F2
ratio
63:1
and
its
expected
BC
ratio
7:1
were
observed,
but
the
F2
ratio,
even
though
found
in
4 of
6
replicates, showed a high degree of heterogeneity. There may
be at least 2 loci for head length in the cross 1, but the
exact number of loci could not be specified.
In 1986,
(Table 23, crosses 1, 2, 3), the F2 and BC progeny segregated
into the same 63:1 and 255:1 ratios, respectively. These BCs
were made in the greenhouse using fresh pollen and must be
genuine. Then why did the BC ratios appear to be F2 ratios?
This is a question without
an answer.
Since the F2
family
with a gene number of 2 (Cross 3), also showed the 15:1 ratio
that was expected, the hypothesis of at least 2 genes can be
postulated.
Crosses 3 and 4 (Table 22) involved different families
of the same cultivars of long head Gero and short to medium
head Walor. The gene number varied from 2 to 11 with a mean
of 6 in cross 3, and from 1 to 5 with a mean of 2 in cross 4.
In both crosses, the BC ratios paralleled F2 ratios, yet the
female parent for the BC in the cross 4 was the inbred Walor,

103
not the Fl (Table 32, 1987). The F2 ratios 63:1 (3 loci) and
255:1 (4 loci)
were non-significant and homogeneous across
the
6
replicates
in cross
3,
but
the
2
loci
ratios
were
highly significant, so that here at least 3 genes (instead of
2)
may be operating.
However,
this did not agree with
the
calculated gene number. In cross 4, F2 ratios for 1, 2, 3 and
4 loci hypotheses were found,
but were very heterogeneous,
i.e.
associated with chi-square values non-significant for
some replicates and highly significant for others. Only the
2 most frequent ratios, 7:1 and 55:9, were presented in Table
22. For cross 4, a minimum of 2 genes is proposed.
No Gero x
Walor F2s were grown in 1986.
Cross 7,
in Table 22,
between T18BE and T23B showed a
high calculated number of genes,
6 to 11 with a mean of 8.
The
more
frequent
F2
ratio
was
15: 1
(2
loci),
but
the
associated chi-square value was variable in its significance
(highly heterogeneous).
The F2 ratios for
four
loci,
255:1
and
243: 13,
were
also
found
even though
their
chi-square
values were more heterogeneous.
The two
methods of gene number determination only agreed on the
fact that there was variation among the replicates of the
F2s, but while the chi-square test indicated a variation
from 2 to 4 loci or more, the gene number calculation
showed a range of 6 to 11 loci.
Similar F2s were not
available in 1986.
c.Seed size (lOO-seed weight) study in 1987.
Parents: Togo, and Walor, are large-seeded;

104
T23DBE is small-seeded.
Cross 13 (Table 22) was a cross between the large-seeded
cultivar Togo
and
the small seed size inbred T23DBE. Cross
9 had Togo and Walor as parents.
Cross 13, (Togo x T23DBE), with a calculated gene number
of 1 to 2 (average 1) showed F2 ratios of 15:1, and 14:2 or
7:1 more frequently, and associated with heterogeneous chi-
square values.
No single gene ratio was observed. The cross
between the two large-seeded cultivars Togo and Walor showed
overdominance
over Walor
(Table
22).
For
this
cross,
the
number of genes determined through direct calculation was 1.
The most frequent
F2 ratios,
13:3 and 54:10 in the
cross,
showed
heterogeneous
chi-square
values.
The
3:1
ratio
supporting the one gene hypothesis
was observed in 3 of
5
replications.
Data in Table 25
summarize the
linkage study between
maturity and
headlength.
The
study was based on the
most
frequent F2 ratios discussed for each trait in each cross. As
the table indicates, there was apparently no linkage between
the traits for the limited number of crosses studied.

105
Table 25: Linkage Study in 1987: Maturity/Headlength
==========================================================
Cross (3)
Early> Late
LH > SH
Linkage
Ratio
63:1
63:1
3969: 63:
63: 1
Early
Early
Late
Late
Family
LH
SH
LH
SH
Chisq.
D.F.
10147-1
96
1
10
0
0.839 ns
3
10147-2
106
1
1
0
0.001 ns
3
10147-3
94
0
5
0
0.124 ns
3
10147-4
137
0
0
0
0.035 ns
3
10147-5
114
1
0
0
0.006 ns
3
10147-6
120
0
1
0
0.007 ns
3
Pooled
667
3
17
0
0.129 ns
3
Homogeneity
0.882 ns
15
---------------------------------------- ---------------
Cross ( 7 )
Late > Early
LH > SH
Linkage
Ratio
13:3
15:1
195: 13: 45: 3
---------------------------------------- ---------------
Late
Late
Early
Early
Family
LH
SH
LH
SH
Chisq.
D.F.
---------------------------------------- ------------
10150-1 159
21
20
3
0.172 ns
3
10150-2 146
0
45
0
0.193 ns
3
10150-3 151
7
34
3
0.692 ns
3
10150-4 138
8
28
1
0.129 ns
3
10150-5 118
0
42
1
0.000 ns
3
Pooled
712
36
169
8
0.027 ns
3
Homogeneity
1.160 ns
12
ns = non significant at p = 0.05.
SH = short head; LH = long head.

106
Table 25: Linkage Study in 1987: Maturity/Headlength
(End)
----------------------------------------------------------
----------------------------------------------------------
Cross (7)
Late > Early
LH > SH
Linkage
Ratio
3:1
15:1
45:
3: 15: 1
Late
Late
Early
Early
Family
LH
SH
LH
SH
Chisq.
D.F.
----------------
10150-1 159
21
20
3
0.718 ns
3
10150-2 146
0
45
0
0.014 ns
3
10150-3 151
7
34
3
0.711 ns
3
10150-4 138
8
28
1
0.056 ns
3
10150-5 118
0
42
1
0.189 ns
3
Pooled
712
36
169
8
0.015 ns
3
Homogeneity
1. 673 ns
12
ns = non significant at p = 0.05.
SH = short head; LH = long head.

107
B2. Discussion
The study of heterosis in the selected crosses showed no
overdominance for maturity but, the hybrid Fls were on the
average earlier than the mid-parent and the late-parent. The
direction of dominance varied from cross 7 (late> early) to
crosses 3 and 15
(early> late).
For head length,
the mean
hybrid head length was between those of the mid-parent and
the high-parent, but some overdominance was observed towards
the high-parent (crosses 3 and 4 between Gero and Walor, with
a
mean
Jinks'
heterosis
of
5.5
cm).
For
seed
size,
the
hybrids had smaller seed than the high-parent but were higher
than the mid-parent for the two selected crosses.
Since heterosis is widely accepted as mainly due to
dominant
gene
action
(Hallauer
and
Miranda,1981),
low
heterosis means low dominant gene effects and high
heritability, while high heterosis means high dominant gene
effects,
low
additive
gene
effects
and
low
heritability.
Because heterosis varied from cross to cross,
heritability
can be expected to also vary from cross to cross.
The
environmental
effect
was
higher
for
head
length
(42%) than for maturity (35%) and seed size (26%). The mean
broad sense heritabilities (H2 ) were consequently higher for
seed size
(74%)
than
for
maturity
(65%),
and
head
length
(58%).
H2 calculated
from
the
totals
of
variances
across
crosses was different from the mean H2 above for each cross.

108
The differences
(H2 -
'total' H2) were 14% for maturity, -2%
for head length, and -7% for seed size. The non similarity in
the differences showed that they arose from other causes than
the
method
of
calculation.
The
environmental
effect,
for
example,
may not
be
the
same
from
one
trait
to
another.
Genotype-environment interaction effects
may be higher for
head length than for seed size and maturity.
The environmental effect and its interaction with the
genotype
may
be
one
of
the
causes
for
the
continuous
variation showed by the frequency distribution charts of the
traits.
The
variation
in
the
expression
of
maturity
(continuous for crosses 3 and 15, and single gene effect in
cross 7) seems to indicate that the trait is probably under
the control of several independent additive loci as in wheat
kernel color
inheritance
reported
by Nilsson-Ehle
in 1910
(Allard, 1960). When two cultivars only differ in alleles of
a single gene,
(this is probably the case between the Tift
inbreds
18E
and
23B),
the
trait
displays
discontinuous
variation and high heritability, while continuous variation
appears in other cases.
The broad sense heritability for seed size reported here
for two crosses seems very high compared to the reports from
Hash (1986) who found heritability of pearl millet grain size
moderately
low
and
from
Phul
and Athwal
(1969)
who
found
pearl millet seed size controlled by additive plus additive
by
dominance
gene
actions,
and
greatly
influenced
by
environment.
It
may
be
because
of
the
limited
number
of

109
crosses evaluated in this study, or genetic differences in
the cultivars used here in the crosses. The hypothesis for
independent
additive
gene
actions
could
apply,
continuous
variation arising only when entries differ by more than one
locus.
The number of genes per trait
Even though the number of crosses was limited, a general
conclusion on the genetics was difficult to reach, especially
for maturity.
When
selfing
plants,
errors
can
result
from
bagging
secondary tillers instead of intended main tillers.
In this
experiment, that kind of error was minimized since the heads
were bagged regularly. Cautiously recording data on maturity
and head length can easily eliminate errors. But total head
seed weight and resulting seed weight per cm of head can be
a source of errors, because a head can lose seed before and
during threshing,
or
during seed transfer into envelopes.
For
this
reason
the
seed
weight
per
cm of
head
\\"TaS
not
studied. There may also be errors in lOO-seed count, because
the machine does not count exactly 100 seeds each time.
At
least three repetitions of each count would have been more
accurate. However,
given the amount of seeds to count in a
limited time this could not be done.
If there was any human
or technical errors associated with the data, i t would be in
lOO-seed
weight.
Some
unusual
results
were
observed
for
maturity and head length.

110
One unusual result was the high gene number estimated
for maturity in the crosses between early short head Togo and
late long head Gero
(cross 15,1987)
and between late Gero
and early Walor (cross 3,
1987).
The heritability (H2) was
56%
and
46%,
respectively
for
these
crosses vlith
a
mean
calculated gene
number
of
14
and 12 ,
respectively.
These
numbers appear to be high even for quantitative traits but
maybe not impossible since Stansfield,
(1983),
gave a gene
number range for such traits that varied from 10 to 100. The
gene
number
for
head
length
was
a
little
lower but
also
consistent with the moderate H2 of the trait. The small seed
size calculated gene number was also consistent with its high
H2.
Further
investigation using
carefully chosen
material
would be necessary to verify this information.
In general, data from this study showed that the number
of
genes
controlling
maturity was
higher
than
has
been
reported
for
pearl
millet.
Considering
all
crosses
the
average gene number was 9
(direct calculation) and 3 (chi-
square
method)
for
maturity,
6
(calculation)
and
4
(chi-
square method)
for
head length,
and 1
(calculation) and 2
(chi-square method) for seed size.
The purpose
for analyzing
the data with a
chi-square
test was to use i t as a check to decide which calculated
gene number fits
the data better,
but this did not
appear
useful in some crosses.
Since heterosis is
largely due to dominance and to
a

111
lesser degree due to epistasis, the amount of heterosis can
give an idea of the importance of epistasis in the material.
The mean heterosis for maturity was 20% at most. Attributing
50% of this heterosis (probably overestimated), there would
be at
most
10%
of
epistatic
effects.
Similarly,
for
head
length and seed size with about 25% heterosis each, epistasis
would account for about 13%
. If this approximation can be
made,
then
this clearly means that
the
'mostly'
epistatic
gene action hypothesis behind the chi-square test would not
hold in general.
In fact,
the epistatic effect is very small
compared to the dominance effect (Halluer and Miranda, 1981)
and not
similar to
i t
as supposed
above.
This may be
one
reason why the gene number and the chi-square ratios did not
match very often. Another reason may be that the calculated
gene number may not be accurate some times since i t was based
on the assumption that dominance existed and this could not
be verified directly.
Despite all
these
limitations,
both
methods estimated the gene number with similar results for
some crosses.
For
maturity,
there
was
at
least
partial
agreement
between the calculated gene number and the chi square ratios
in crosses 3 and 7, so that, at least 3 genes in cross 3, and
1 to 3 genes maximum in cross 7 control the trait. Similarly,
at least 2 genes were probably controlling maturity in cross
15 where the upper limit could not be set.
Partial agreement was found for head length in crosses
1, 3, and 4, in 1987. At least 2 genes probably control head

112
length in cross 4, and maybe 3 genes were operating in cross
1 and 3.
Crosses 3 and 4 did not seem to be the same even
though both involved the same cultivars Gero and Walor.
There
was
no
agreement
between
the
calculated
gene
numbers (greater than 6) in cross 7, and the chisquare ratios
suggesting 2 genes minimum.
There was
full
agreement between
the
calculated gene
number
and the
chi square
ratios
in cross
9
regarding
the
minimum gene number that expresses seed size.
Both methods
suggested a minimum of 1 gene in the cross.
The calculated minimum gene number in cross 13 was
1
while the chi-square
test indicated at
least 2 genes.
One
gene probably controlled seed size in this cross.
The maximum gene number controlling seed size was 3 for
both crosses 9 and 13.
Data
in
Table
26
summarized
the
minimum
and
the
reasonable maximum gene numbers that are proposed for each
cross as discussed above. Several reasons may account for the
fact
that
a
clearer
estimate
of
the
number
of
genes
controlling each character was not determined:
- Quantitative traits in general are not suitable for
this kind of analysis because their variation is continuous.
-
Such
traits
are
affected by
environmental
effects
which are not easy to remove from their phenotypic variances.
Small
effects
of
modifier
genes
also
add
to
the

113
phenotypic variances of the quantitative traits and this may
bias the gene number determination.
The fact that the linkage chisquare test between head
length and maturity was not significant does not necessarly
mean that there was no linkage between them.
If
i t is true
that many genes
are involved in maturity and head
length,
then,
chances
are that
linkage is
somewhere between
these
traits.
Since the
calculated number of
genes seemed to
be
high and only ratios corresponding to low gene number (1 to
4 genes) were used in the test,
the existing linkage could
easily be missed.

114
Table
26:
Summary of
the minmum
number of
genes
per
cross
==========================================================
M A
T
U
R
I
T
Y
I N
1 9 8
7
Cross(3) Late Gero * Early Walor
Family
Minimum gene number
Maximum gene number
10147 - 1
3
?
10147 -
2
3
8
10147 -
3
3
6
10147 -
4
3
?
10147 -
5
3
?
10147 - 6
3
?
Pooled
3
8
Cross(7) Early T18BE * Late T23B
Family
Minimum gene number
Maximum gene number
10150 - 2
1
3
10150 -
3
1
2
10150 - 4
1
3
10150 -
5
1
3
10150 - 6
1
1
Pooled
1
2

115
Table
26:
Summary of
the minmum
number
of
genes
per cross
==========================================================
M
A
T
U
R
I
T
Y
I N
1
9
8
7
(End)
Cross(15) Early Togo * Late Gero
Family
Minimum gene number
Maximum gene number
10159 - 1
2
?
10159 - 2
2
?
10159 -
3
2
7
10159 - 4
2
4
10159 -
5
?
?
10159 - 6
2
?
Pooled
?
6

116
Table
26:
Summary of
the minmum
number
of
genes
per cross
----------------------------------------------------------
----------------------------------------------------------
H
E
A
D
L
E
N
G
T
H
Cross(l) IN 1987
Longhead Gero * Short head T23DBE
Family
Minimum gene number
Maximum gene number
10145 - 1
3
4
10145 - 2
4
7
10145 -
3
3
6
10145 - 4
3
5
10145 -
5
3
4
10145 - 6
3
?
Pooled
5
?
Cross(l)
in 1986
Longhead Gero * Short head T23DBE
Family
Minimum gene number
Maximum gene number
9804
3
4
Cross(2)
in 1986
Longhead Gero * Short head T23DBE
Family
Minimum gene number
Maximum gene number
9805
3
4
Cross(3)
in 1986
Longhead Gero * Short head T23DBE
Family
Minimum gene number
Maximum gene number
9806
2
4
-----------------------------------------------------------
-----------------------------------------------------------
Cross(3) in 1987
Longhead Gero * Short head Walor
Family
Minimum gene number
Maximum gene number
10147 - 1
2
4
10147' - 2
3
4
10147 - 3
3
9
10147 - 4
3
4
10147 - 5
3
5
10147 - 6
3
?
Pooled
4
4

117
Table
26:
Summary of
the
minmum
number
of
genes
per
cross
==========================================================
H
E
A
D
L
E
N
G
T
H
(End)
Cross(4) in 1987
Longhead Gero * Short head Walor
Family
Minimum gene number
Maximum gene number
10148 - 1
1
3
10148 -
2
1
3
10148 -
3
?
5
10148 -
4
2
3
10148 -
5
2
3
10148 -
6
3
3
Pooled
2
3
Cross(7) in 1987
Longhead T18BE * Short head T23B
Family
Minimum gene number
Maximum gene number
10150 - 2
?
6
10150 -
3
3
?
10150 - 4
2
6
10150 -
5
2
6
10150 -
6
3
9
Pooled
2
9

118
Table
26:
Summary of
the minmum
number of
genes
per
cross
==========================================================
S E E
D
S
I
Z
E
I N
1 9 8
7
Cross(9)
Large seed Togo
*
Large seed Walor
Family
Minimum gene number
Maximum gene number
10153 - 1
1
3
10153 - 2
1
1
10153 -
3
1
3
10153 - 4
1
3
10153 -
5
1
3
Pooled
1
2
Cross(13)
Large seed Togo
*
Small seed T23DBE
Family
Minimum gene number
Maximum gene number
10158 - 1
2
3
10158 - 2
1
2
10158 -
3
1
2
10158 - 4
1
2
10158 -
5
1
2
10158 - 6
1
2
Pooled
1
?

( v ) SUMMARY AND CONCLUSION
In an attempt to provide more information on the factors
influencing grain yield and its components in pearl millet,
Pennisetum glaucum (L.) R. Br. / a plant management study and
a genetic study were conducted for two years.
The
plant
management
study
lead
to
the
observations
that tillering ability of the plants, total head seed weight,
weight
of
100
seeds
(or
seed
size),
and
yield,
were
significantly
affected
by
maturity,
plant
height,
plant
population density and planting date.
Earlier
maturing
plants
produced
more
but
shorter
tillers,
less but heavier seed, and higher grain yields.
Shorter plants had higher seed weight per head, lighter
seeds and lower yield.
It appeared that yield increase depended more on seed
size increase than on total head seed weight increase.
Plant populations that were less dense, matured later,
produced more tillers, had higher total head seed weight, and
were
shorter.
Yield
and
seed
size
were
not
affected
significantly by plant population density.
Plants in early plantings took longer to mature seeds,
produced more tillers, produced more total head seed weight,
were higher yielding,
and were shorter
than plants in
the
late plantings.
Seed size was not significantly affected by

the planting date.
Tillering ability of plants was negatively correlated
with
plant
height:
shorter
plants
always
produced
more
tillers than taller
plants.
Tillering can be
manipulated
through plant spacing, planting date, or choice of inbreds.
It was also noticed that the total head seed weight, an
important yield component, could be increased substantially
by planting early.
The disease effects were not agronomically important.
The overall conclusion of the plant management study was
that yield and its more important components can be increased
by choosing an
early maturing
semi-dwarf
inbred,
planting
early, and thinning to one plant per hill, with hills spaced
15 to 20 cm on rows about 90 cm apart.
The
plant
breeding
I
genetic
study
showed
that
headlength,
seed
size,
and
even
maturity,
(days
to
flowering), appeared to be quantitative traits.
Even though
the
genetics
of
such
traits
is
not
easy
to
study,
the
combination of
the Chi-square
method outlined
by Hanna
et
al.,
(1978),
and
the
gene
number
calculation
method
attributed to Sewell Wright by Burton, (1951), provided some
information
about the
minimum number
of genes
expressing
each trait. Also, the study of heterosis, heritability, and
frequency distribution, provided information on the traits.
The material
studied
seemed very complex.
Each
cross
appeared to be very specific, suggesting the need to use the
120

121
pedigree method in crosses. Further investigations are needed
to check the inbreeding level in the cultivars (for a better
choice of parents in a breeding program) and to clarify the
genetics of the traits studied.
In
particular /
crosses
within
each
cuI t i var /
(Gero /
Togo, and Walor at least), may give some information on the
level
of
di versi ty.
If
a
within-cuI ti var
di versi ty
were
found,
then selection of parents within each cultivar would
become necessary before making intercultivar crosses.
Each
selection within a cultivar would need also to be crossed to
several
known
inbreds
for
each
trait,
with
all
the
reciprocals
and
backcrosses.
Crosses
between
established
inbreds like T23B, T23DBE,
and T18BE, would be made at the
same time and used as checks. This would allow collection of
more
accurate
information and
better
hypotheses
would
be
generated.
From the limited number of crosses examined, seed size
was about 10% more heritable than maturity which in turn was
7% more heritable than head length.
Epistasis estimated from heterosis was less than 10% for
maturity and less than 13% for head length and seed size. The
chi-square
test
based on
epistasic
gene
action
for
these
quantitative
characters
may
not,
therefore,
have
been
suitable for the data.
Nonetheless, the test was
helpful in making a decision about the gene number in some of
the crosses.
Only in
one cross
out
of
3 was
maturity found
to
be

122
controlled
by
one
gene.
For
the
other
two
crosses,
the
minimum gene number was 2 or 3, and there was no way to set
the upper limit which went up to 9 genes on the average.
The mininmum gene number found in the material for
head length was 1, 2,
3, or
6 depending on the cross. The
upper limit gene number for this trait was 2 for cross 1, 6
for two crosses, and 8 for the last one.
The minimum gene number mostly found for seed size was
1 in both crosses with a maximum of 3 in one cross and 2 in
the second.
The gene number,
or more precisely
the range of
gene
numbers, per trait proposed here has to be considered with
caution. It just gives an idea of what may be going on in the
expression of each trait. The main conclusion here is that:
a) maturity can be more complex in some pearl millet
material
than
i t
has
been previously
reported.
It
may
be
controlled by a number of additive independent genes like the
inheritance of the kernel color in wheat;
b) the head length of pearl millet seems to be a complex
trait probably more influenced by environment than maturity
and seed size; and
c) seed size seemed to depend on only a few genes (1 to
3 ), in the material studied.
No linkage was detected between any two of the traits
(maturity, head length, and seed size).

123
The
minimum
gene
number
found
in
the
pearl
millet
material studied can reasonably be summarized as
following:
Maturity
1 to 3 genes minimum, no speculation could be
made about the maximum.
Headlength:
2 to 3, most probably 3, genes minimum; no
speculation could be made about the maximum.
Seed size:
1 to 3, most probably 1 or 2, genes minimum;
the maximum not to exceed 5.

BIBLIOGRAPHY
Adjei-Twum, D. C., 1987. Effects of plant density and
tillage on growth and grain yield of sorghum (Sorghum
bicolor (L.) Moench.) under dryland conditions in a
semi-arid area in Ethiopia.
Journal of Agric.
Science,
U.K. 100 (2):
395 -
401.
Allard, R. W., 1960. "Principles of Plant Breeding". John
Wiley & Sons, Inc., N.Y.
Amaya, A. A., R. H. Busch and K.
L.
Lebrock, 1972.
Estimate of genetic effects of heading date, plant
height and grain yield in durum wheat. Crop Science
Vol. 12: 478 -
481.
Andrews, D. J., K.
N. Rai and S. D.
Singh, 1985. A single
dominant gene for rust resistance in pearl millet. Crop
Science Vol.
25:
565 -
566.
Arya, H. C. and R.
Sharma. 1962. On the perpetuation and
recurrence of the greenear disease of Bajra (Pennisetum
typhoides) caused by Sclerospora graminicola (Sacc.)
Schroet.
Indian Phytopathology 15 (2) 166 -
172.
Bauer, P. J. and P. R. Carter. 1986. Effect of seeding
date, plant density, moisture availability and soil
nitrogen fertility on maize kernel breakage
susceptibility. Crop Science Vol.
26: 1220 -
1226.

Bramel-Cox, P.
J., D. J. Andrews and K. J.
Frey. 1986.
Exotic germplasm for improving grain yield and growth
rate in pearl millet. Crop Science (26):
687 -
690.
Brunken, J.
N., J. M. J. De Wet and J. R. Harlan. 1977.
The morphology and domestication of pearl millet.
Economy Botany Vol.
31: 163 -
174.
Burton, G. W.
1951. Quantitative inheritance in pearl
millet. Agron.
J.
43:
409 -
417.
Burton, G. W.
1965a. Pearl millet Tift 18A released.
Crops and Soils 17: 19.
Burton, G. W. 1965b. Male sterile pearl millet Tift 18a
released. Crops and Soils Vol 18 (1):
19.
Burton, G. W. 1967. Pearl millets Tift 23DA and 23DB
released. Georgia Agri Res.
9 (1):
6.
Burton, G. W. 1969. Registration of pearl millet inbreds
Tift 23B, Tift 23A, Tift 23DB and Tift 23DA.
Crop
Science 9: 397.
Burton, G. W. 1980. Pearl millet.
Chapter 12 in
"Hybridization of crop plants" Pub. by American
Society of Agronomy. Ed. W. R.
Fehr and H. H. Hadley
pp 457 - 469.
Burton, G. W.
1981. A gene for early maturity and
photoperiod insensitivity in pearl millet.
Crop
Science 21:
317 -
318.
Burton, G. W.
1983. Breeding pearl millet.
Plant
Breeding Reviews 1: 162 -
182.
125

126
Burton, G. W.
and J. C.
Fortson. 1966.
Inheritance and
utilization of five dwarfs in pearl millet (Pennisetum
typhoides) breeding. Crop Science 6:
69 -
72.
Burton, G. W., W. G. Monson, J.
C. Johnson Jr., R.
S.
Lowrey, H. D. Chapman and W. H. Marchant.
1969.
Effect of the d 2 dwarf gene on the forage yield and
quality of pearl millet. Agron.
J. Vol.
61:
607 -
612.
Burton, G. W., A. T. Primo and R.
S. Lowrey. 1986. Effect
of clipping frequency and maturity on the yield and
quality of four pearl millet. Crop Science 26 (1):
79
-
81.
Chahal, S. S., R.
Kumar, J.
S. Sidhu and J. L. Minocha.
1986. Peroxidase isozyme pattern in pearl millet lines
resistant and susceptible to ergot.
Indian Phytop.
39
(1): 65 -
69.
Chase, A. 1921. The Linnaean concept of pearl millet.
Ann.
J. Bot. 8: 41 -
49.
Duncan, R.
R.
and R. B. Moss. 1986. The influence of
maturity on sorghum grain yields when ratoon cropping.
Georgia Agric.
Expt. Stat. Research Report 1 - 11.
Fanous, M. A., D. E. Weibel and R. D. Morrison.
1971.
Quantitative inheritance of some head and seed
characteristics in sorghum (Sorghum bicolor (L)
Moench). Crop Science Vol.
11: 787 -
789.
Fehr, W. R. 1987.
"Principles of cultivar development".
Vol. 1 pp 95 - 105, and p. 175.

127
Francis, C. A., S. Mohammed, L. A. Nelson and R. Moomaw.
1984. Yield stability of sorghum hybrids and random
mating population in early and late planting dates.
Crop Science 24: 1109 - 1112.
Frankel, R. 1983.
"Heterosis. Reappraisal of theory and
practice".Springer and Verlag Ed.
Frederiksen, R. A. 1980. Sorghum downy mildew in the
United States. Overview and outlook. Plant disease
Vol.
64 (10):
903 -
908.
Frederiksen, R. A. 1986. Editor of "Compendium of
sorghum diseases" pp 17 -
23.
Frere, M. 1982. Ecological zones and production of
sorghum and millet.
"Agrometeorology of sorghum and
millet in the semi-arid tropics".
Proc. of Internal
Symposium, Nov. 15 -
20. 1982 ICRISAT.
Gupta, V. P. and D.
S. Athwal.
1966. Genetic variability
correlation and selection indices of grain characters
in pearl millet. J. of Res.
3: 111 -
117.
Gupta, V. P.
and G.
S. Nanda.
1971. Role of grain plant
and head characters in improving grain yield of pearl
millet. The Indian J. of Genetics and Plant Breeding
31: 128 - 131.
Hallauer, A. R.
and J.
B. Miranda 1981.
"Quantitative
genetics in maize breeding" Iowa State Univ.
Press.
Ames, USA.

128
Hanna, W. W.
and G. W.
Burton. 1985a. Morphological
characteristics and genetics of two mutations for
early maturity of pearl millet. Crop Science Vol.
25:
79 -
8I.
Hanna, W. W.
and G. W.
Burton. 1985b. Registration of
pearl millet inbreds "Tift 23BE" and "Tift 23AE". Crop
Science Vol.
25: 366.
Hanna, W. W., H. D. Wells and G. W.
Burton. 1985.
Dominant gene for rust resistance in pearl millet. J.
of Hered.
76: 134.
Hanna, W. W., H. D. Wells, G. W. Burton and W.
G. Monsoon
1983. Long-term pollen storage of pearl millet. Crop
Science Vol.
23: 174 -
175.
Hanna, W. W., B. Mullinix, L. Grimes.
1978. Computer
Programs for Analyses of Inheritance and Linkage Data.
Crop Science Vol. 17
517.
Hartwig, E.
E.
and K. R. Bromfield. 1983. Relationships
among three genes conferring specific resistance to
rust in soybeans.
Hash Jr., C. T.
1986. "Breeding for large grain size in
pearl millet, Pennisetum americanum (L) Leeke". Ph. D.
Dissertation. Cornell Univ.,
Ithaca, N.
Y.
Hayman, B.
I. 1958. The separation of epistatic from
additive and dominance variation in generation means.
Heredity 12:
371 -
390.

129
Hayman, B. I. 1960. The separation of epistatic from
additive and dominance variation in generation means
11. Genetica 31: 133 - 146.
Hoyle, M. H. 1973. Transformations. An introduction and
a bibliography. Int. Stat. Rev. Vol. 41 (2): 203 - 223
Hutchinson, E. S. 1984. Seed size and quantitative
characters in Avena barbata. Heredity 52(1): 25 - 33.
Jauhar, P. P. 1981. "Cytogenetics and breeding of pearl
millet and related species" Alan R. Liss Inc., N. Y.
Kalmbacher, R. S. and F. G. Martin. 1986. Plant density
effects on sorghum yield and tillering. Proc., Soil
and Crop Science Society of Florida 45; 122 - 125.
Kapoor, A. S. and L. M. Joshi. 1986. Inheritance of slow
rusting Puccinia graminis tritica of wheat.
Indian
Phytopathology 39(1): 50 -
56.
Kapoor, A. S., S. Pande and L. M. Joshi. 1986.
Evaluation of slow stem-rusting resistance in wheat
under field conditions. Indian Phytop. 39(2):225 - 229
Khadr, F. H. and A. K. Oyinloye. 1978. Mass selection for
grain yield and seed size in pearl millet Pennisetum
typhoides. Alexandria J. Agric. Res. 26(1): 79 - 84.
Kiesselbach, T. A. 1960. The significance of Xenia effects
on the kernel weight of corn. Nebraska Agric. Exp.
Stat. Res. Bull. 1: 1958 - 1962.
Kiniry, J. R. 1988. Kernel weight increase in response to
decreased kernel number in sorghum. Agron. J. Vol. 80
(2):
221
226.

130
Kulkarni, Nand V. K.
Shinde. 1985. Heterosis and
inbreeding depression in grain sorghum.
Indian Jour.
of Agric.
Science Vol.
55(8):
505 -
509.
Lucas, E. O.
and S. U. Remisson.
1984. Effect of
population density on yield and dry matter partition
of maize varieties in Nigeria.
Indian Jour.
of Agric.
Science 54:
284 -
290.
McEwen,
P.L.,
G.R.
Stephenson,
1979.
" The
Use and
Significance of Pesticides in the Environment".
John
Wiley & Sons, N.Y.
Mather, K. 1949.
"Biometrical genetics". Dover
Publications Inc.
Michelmore, R. W., M.
N. Pawar and R. J. Williams. 1982.
Heterothallism in Sclerospora graminicola.
Phytopath.
72: 1368 -
1372.
Monson, W. G., W. W. Hanna and T. P. Gaines. 1986.
Effects of rust on yield and quality of pearl millet
forage.
Crop Science 26 (3):
637 -
639.
Natarajan, U. S., V. D. Guruswamy Raja, S. Selvaraj and
C. Parambaramani. 1974. Grain loss due to ergot
disease in Bajra hybrids.
Indian Phyto.
27 (2): 254 -
256.
QU,
S. H. 1980. A look at worldwide rice blast disease
control. Plant disease 64 (5): 439 -
445.
QU,
S. H. 1985.
"Rice disease" pp 109 -
201. C. A. B.
Publications.
Commonwealth Mycological Inst.

131
Pfeiffer, T. ,W. and D. Pilcher. 1987. Effect of early and
late flowering on Agronomic traits of soybean at
different planting dates. Crop Science (27): 108 - 112.
Phul, P.
S. and D.
S. Athwal. 1969.
Inheritance of grain
size and grain hardness in pearl millet.
Powers, L. 1942. The nature of the series of environmental
variances and the estimation of the genetic variance
and the geometric means in crosses involving species
of Lvcopersicon. Genetics 27:
561 -
575.
Powers, L. and C. B. Lyon. 1941.
Inheritance studies on
duration of developmental stages in crosses within the
genus Lycopersicon. J. Agro. Res.
63: 129 - 148.
Rachie, K. O. and V. J. Majmudar.
1980. "Pearl millet"
The Pennsylvania State Univ.
Press.
Ram, H. H. and A.
Singh. 1975. Genetics of days to
heading in pearl millet. The Indian Jour. of Genetics
and Plant Breeding 35;
54 -
56.
Rana, B.
S., B. C. Barah, H.
P. Binswanger and N.
G.
P.
Rao. 1984. Breeding optimum plant types in Sorghum.
Indian Jour.
Gen. Plant Breed.
44(3):
385 -
398.
Saeed, M. and C. A.
Francis. 1986. Yield-maturity
relationship of grain sorghum in diverse environments.
Crop Science Vol.
26: 1077 -
1079.
Sagar, P., R.
L. Kapoor and G.
Singh. 1985. Genetics of
heading and maturity in pearl millet grown under
different levels of moisture stress. Crop.
Improv.

132
Sandhu, S. S. and P. S. Phul.
1984. Genetic variability and
expected response to selection in a pearl millet
population.
Ind. Jour. Gen.
Plant Breed. 44(1):
73 -
79
Shanker, K., M. Ahluwalia and S. K.
jain. 1963. The use of
selection indices in the improvement of pearl millet
population.
Ind.
Jour. Gen.
Plant Breed 23:
30 -
34.
Sharma, Y.
R., M.
S. Kang and G.
S. Bhullar. 1986.
Evaluation of components of slow rusting in wheat
varieties of yellow rust.
Ind. Phytop.
39: 221 -
224.
Singh, G., G. S. Bhullar and K.
S. Gill. 1984.
Inheritance
of
plant
height,
days
to
heading,
spike
length,
peduncle length and spikelets per spike in spring wheat
cross.
Ind. J. Gen.
44:
522 -
527.
Singh, B. B. and S. S. Sokhi. 1983. Effect of rust of pearl
millet on yield components.
Ind. Phytop.
36: 89 -
91.
Sinnot, E. W.,
L. C. Dunn and T. H. Dobzhansky. 1950.
"Principles of genetics" pp.
145 - 146. McGra~I-Hill Book
Co.
Inc.
Smith, R.
L. 1987. "Production of new double-cropped grains
and their potential for poultry feed". M.
S. Thesis.
Dept. of Agronomy, Univ. of Georgia, Athens.
Sokhi, S. S., H.
S. Rawal, J.
S.
Jhooty and S. S. Bains.
1978.
Investigations on rust of pearl millet.
Indian
Phytop.
31: 124.
Stansfield, W. D. 1983. " Genetics"
Schaum's Outline
Series. Mc Graw-Hill Edition.

133
Terrel, E.
E. 1976. The correct name for pearl millet and
yellow foxtail.
Taxon 25:
297 -
304.
Terrel, E. E., S. R. Hill, J. H. Wiersema and W.
E. Rice.
1986. "A checklist of names for 3000 vascullar plants
of economic importance". U.S.D.A. Agric. Handbook
No.
505.
Tyagi, C. S., R.
S. Paroda, N.
D. Arora and K.
P.
Singh.
1975. Heterosis and combining ability in pearl millet.
Ind. Jour.
Gen. Plant Breed.
35:
403 -
408.
Upadhahy, M. K.
and B. R. Murty. 1971. Genetic diversity
and combining ability in pearl millet.
Ind. Jour. Gen.
Plant Breed.
31: 63 -
71.
Van Dat, T. and M.
L. Peterson. 1983. Performance of near-
isogenic genotypes of rice differing in growth duration
I.
Yields and yield components. Crop Science 23:
239 -
242.
Voigt, R.
L., C. O. Garder and O. J. Webster. 1966.
Inheritance of seed size in sorghum, Sorghum vulgare
Pers. Crop.
Science 6:
582 -
586.
Wells, H. D. 1956. Top root of peral millet caused by
Fusarium moniliforme. Plant Disease Reporter 40:
387.
Wells, H. D. 1967a. Effectiveness of two 1, 4-0xanthin
derivatives for control of Tolysporium smut of pearl
millet. Plant Disease Reporter 51:
468 -
469.
Wells, H. D. 1967b. Effects of temperature on pathogenicity
of
Helminthosporium setaria
on
seedlings
of
pearl
millet Pennisetum typhoides.
Phytop.
57: 1002.

134
Wells, H. D. and G. W. Burton. 1967. Helminthosporium
setaria on pearl millet, Pennisetum typhoides as
affected by age of host and host difference. Crop
Science 7:
621 -
622.
Wells, H. D., G. W. Burton and J. F. Hennen. 1973. Puccinia
substriata
var.
indica
on
pearl
millet
in
the
Southeast. Plant Disease Reporter 57:
262.
Wells, H. D., G. W. Burton and D. K. Ourecky. 1963.
Tolysporium smut, a new disease on pearl millet,
Pennisetum glaucum, in the united States. Plant Disease
Reporter 47: 16 - 19.
Wells, H. D., W. W. Hanna and G. W.
Burton. 1987. Effects
of inoculation and pollination on smut development in
near-isogenic lines of pearl millet. Phytop.
77:
293 -
296.
Wells, H. D. and E. E. Winstead.
1965. Seed-borne fungi in
Georgia-grown and Western-grown pearl millet seed in
sale in Georgia during 1960. Plant Disease Reporter 49:
487 -
489.
Willingale, J., P. G. Mantle and R. P. Thakur.
1986. Post-
pollination stigmatic constitution, the basis of ergot
resistance
in
selected
lines
of
pearl
millet.
Phytopath.
76:
536 -
539.
Yadaw, R. K. S.
and J. P. Agnihotri. 1980a.
Invasion by
Pyricularia penniseti, the cause of leaf spot of Bajra.
Indian Phytop.
33: 124 - 126.

135
Yadaw, R. K.
S. and J.
P. Agnihotri. 1980b. Epidemiology
of pyricularia leaf spot of Bajra.
Ind. Phytop.
33:
150.
Yadaw, R. K.
S., J. P. Agnihotri and R.
Prasada. 1980.
Resistance of Bajra to Pyricularia leaf spot.
Ind.
Jour. of Mycol. and Plant Pathol. 10: 197 - 198.
Young, G.Y., C.L. Lefebvre, and A.G. Johnson, 1947.
and Pearl

APPEHDIX

Table AI: Generation means for Head length ( cm
in 1986
Cross
Family
N
Range Mean
Variance
CV
Trait
Fem.Par.
9499-G*
6
30-61
46.7
191.0
29.6
Long head
Mal.Par. T23DBE
20
18-23
19.9
2.7
5.0
Short head
Fl
9497
12
31-46
35.8
18.1
11.9
Long head
(1)
F2
9804
79
14-50
31.1
42.8
21.0
BC(l)
9784
109
17-51
31.3
40.0
20.2
BC(2)
9aOl
119
17-36
26.1
12.4
13.5
---------------------~----------------~--------~--------~-
Fem.Par.
9499-G
6
30-61
46.7
191.0
29.6
Long head
Mal.Par. T23DBE
20
18-23
19.9
2.7
5.0 Short head
F1
9497
12
31-46
35.8
18.1
11.9
Long head
(2)
F2
9805
78
19-44
28.4
31.3
19.7
BC(l)
9803
79
16-42
26.5
22.9
20.3
Fem.Par.
9500-G
7
38-72
54.6
155.0
22.8
Long head
Mal.Par. T23DBE
20
18-23
19.9
2.7
5.0 Short head
F1
9497
12
31-46
35.8
18.1
11.9
Long head
(3)
F2
9806
79
13-53
30.5
46.2
22.3
BC(l)
9803
116
20-50
32.5
43.6
20.3
Fem.Par. 9615-T
3
18-25
20.7
14.4
18.3
Short head
Mal.Par. T23DBE
20
18-23
19.9
2.7
5.0 Short head
F1
9612*
7
15-27
26.1
0.8
3.4 Short head+
(9)
Fl
9613*
21
20-26
23.6
3.5
8.0
F2
9838
78
16-33
22.4
11.2
·14.9
F2
9839
66
15-30
22.2
11.3
15.2
F2
9840
89
15-40
21.4
12.0
16.2

Table AI: Generation means for Head length ( cm )
in 1986 (Cont. )
Cross
Family
N
Range
Mean Variance CV
Trait
---------------------------------------------------------
F2
9841
39
15-30
21.2
10.4
15.2
(9)
F2
9842
73
17-31
22.4
7.6
12.3
BC(l)
9845
108
12-31
22.7
11.2
14.7
BC(l)
9846
59
14-30
22.3
15.0
17.4
BC(2)
9843
78
15-32
22.7
12.5
15.6
BC(2)
9844
107
15-30
22.1
7.3
12.3
-----------------------------------------------------------
Fem.Par. 9650-W
6
19-26
21.7
5.9
11.2 Short head
Mal.Par. 9734-T
7
18-20
18.7
0.6
4.0 Short head
F1
9660*
11
20-31
25.1
11.7
13.6 Shorthead+
(10)
F2
9850
102
15-29
22.1
7.5
12.4
F2
9851
83
13-28
21.3
10.4
15.2
F2
9852
29
8-23
18.4
8.2
15.6
F2
9853
58
15-28
20.3
9.8
15.4
BC(l)
9792
63
16-30
22.2
7.9
12.6
BC(l)
9793
100
17-28
22.7
4.7
9.8
-----------------------------------------------------------
Fem.Par. 9650-W
6
19-26
21.7
5.9
11.2 Short head
Mal.Par. T23DBE
20
18-23
19.9
2.7
5.0 Short head
F1
9655
18
20-29
25.7
4.9
9.4 Shorthead+
F1
9656
14
38-47
41.8
7.84
6.7 Long head
(11)
F2
9895
75
14-31
22.1
9.3
13.8
F2
9896
70
16-30
21.9
9.3
13.9
F2
9897
79
14-30
22.4
10.9
14.7
F2
9898
70
16-28
22.4
8.0
12.7

Table AI: Generation means for Head length ( cm )
in 1986 (Cont. )
Cross
Family
N
Range
Mean Variance
CV
Trait
-----------------------------------------------------------
F2
9899
79
13-28
20.5
9.7
15.2
F2
9900
129
12-28
21.1
11.2
15.9
F2
9901
82
16-27
21.4
7.2
12.6
(11)
BC(l)
9796
63
15-30
23.5
8.4
12.3
-----------------------------------------------------------
Fem.Par.
9662-W
4
24-28
26.3
2.9
6.5 Short head
Mal.Par. T23DBE
20
18-23
19.9
2.7
5.0 Short head
F1
9659
11
21-29
25.1
6.3
10.0
Walor
(12)
F2
9889
80
15-26
21.1
5.9
11.5
F2
9890
62
18-33
24.3
11.2
13.8
F2
9893
117
13-27
20.7
6.1
11.9
F2
9894
96
15-27
20.6
6.1
12.0
BC(l)
9794
85
19-36
27.2
14.0
13.8
BC(l)
9795
90
16-34
25.6
9.0
11.7
BC(2)
9893
117
13-27
20.7
6.1
11.9
-----------------------------------------------------------
Fem.Par. 9724-T
7
17-21
19.4
3.0
8.8 Short head
Mal.Par. 9499-G
6
30-61
46.7
191.0
29.6 Long head
F1
9726
17
23-41
34.7
21.1
13.2 Long head
(13)
F2
9854
98
15-39
27.3
16.1
14.7
F2
9855
91
18-35
26.8
15.7
14.8
F2
9856
83
16-36
25.5
18.8
17.0
F2
9857
97
15-38
27.3
21.7
17.0
F2
9858
84
17-40
29.0
23.0
16.6
F2
9859
81
20-38
26.8
18.5
15.9
,;;,c.OU
86
:"~-:;2
26. _9
10./
12.0

. ... Table AI: Generation means for Head length ( cm )
in 1986 (End.)
Cross
Family
N
Range
Mean Variance
CV
Trait
BC(l)
9797
89
15-35
25.0
15.0
15.5
(13)
BC(l)
9798
103
16-36
24.4
14.6
15.6
BC(l)
9799
58
17-31
24.2
11.0
13.7
Fem.Par. 9737-T
9
18-20
19.2
0.4
3.5 Short head
Mal.Par. T23DBE
20
18-23
19.9
2.7
5.0 Short head
Fl
9742
19
21-27
23.6
1.5
6.4 Short head+
(14)
Fl
9743
11
21-27
24.5
3.7
7.8 Short head+
F2
9861
100
16-28
21.3
6.7
12.1
F2
9864
90
16-28
21.3
9.1
14.2
F2
9866
105
15-34
21.8
11.0
15.2
F2
9867
99
14-26
20.5
6.9
12.9
F2'
9868
74
16-27
21.1
7.1
12.6
F2
9869
102
15-27
21.3
7.1
12.5
BC(l)
9888
54
14-27
21.1
12.3
BC(2)
9880
103
14-29
21.8
11.2
15.4
BC(2)
9881
96
12-26
20.7
7.1
12.9
* : E = T18BE : G = Gero ; T = Togo : W = Walor.
N = number of obser vations per family.
Short head+ = overdominance.

Table A2A: Generation Means for Days to flowering
in 1987.
Standard
Cross
Family
Mean Deviation
Variance c.v.
Trait
-------------------------------------------------------
Fem.Par. 10080-G
67
4.3
18.6
6.5
Late
Mal.Par.
23DBE
48
1.5
2.2
3.1
Early
Fl
10123
53
9.9
97.6
18.7
Early
( 1)
F2
10145
52
7.8
57.4
14.6
BC(l)
10162
63
6.3
40.0
10.1
BC(2)
10175
49
4.9
23.8
9.9
Fem.Par. 10084-G
68
3.1
9.5
4.6
Late
Mal.Par. 10097-W
48
2.5
6.3
5.2
Early
Fl
10126
56
3.2
10.1
5.7
(3)
F2
10147
56
3.9
15.1
7.0
BC(2)
10164
55
3.8
14.6
7.0
BC(2)
10165
55
3.3
10.9
16.6
Fem.Par. 10085-G
65
2.8
8.1
4.4
Late
Mal.Par. 10100-W
45
2.5
6.4
5.6
Early
F1
10127
58
4.7
22.1
8.1
Late
(4)
F2
10148
57
4.8
22.6
8.3
BC(2)
10168
47
2.8
7.9
6.0
Fem.Par. 10086-G
63
3.6
12.7
5.7
Late
Mal.Par. T23DBE
48
1.5
2.2
3.1
Early
Fl
10128
53
5.4
28.9
10.1
Early
(5)
BC(l)
10173
59
8.2
66.7
14.4

Table A2A: Generation Means for days to flowering
in 1987 (End)
standard
Cross
Family
Mean
Deviation
Variance C.V.
Trait
--------------------------------------------------------
Fem.Par. 10090-E
44
1.4
1.9
3.1
Early
Mal.Par. T23B
70
1.3
1.6
1.8
Late
F1
10131
61
3.4
11.2
5.5
Early
(7)
F2
10150
59
10.7
115.4
18.2
BC(l)
10166
60
11.2
124.7
18.6
BC(2)
10167
65
5.3
28.3
8.2
Fem.Par. 10115-T
42
2.7
7.1
6.3
Early
Mal.Par. 10086-G
63
3.6
12.7
5.7
Late
F1
10141
45
4.7
21.7
10.5
Early
(15)
F2
10159
52
6.1
36.7
11.6
Table 28B : Generation Means for Head length in 1987.
standard
Cross
Family
Mean Deviation Variance
C.V.
Trait
Fem.Par. 10080-G
43
4.8
23.1
11.1
Longhead
Mal.Par. T23DBE
18
1.3
1.6
7.3
Shorthead
F1
10123
29
3.7
13.7
12.9
Shorthead
(1)
F2
10145
29
6.1
36.6
21.1
BC(l)
10162
34
6.0
35.5
17.5
BC(2)
10175
27
4.9
23.7
17.8
Fem.Par. 10081-G
37
7.1
50.0
19.3
Longhead
Mal.Par. T23B
17
2.3
5.4
-13.5
Shorthead
F1
10125
31
3.3
10.8
10.7
Longhead
(2)
27
18.6
15.8

Table A2B: Generation Means for Head length in 1987.
(CONT. )
standard
Cross
Family
Mean Deviation Variance
C.V.
Trait
---------------------------------------------------------
BC(l)
10163
33
3.7
13.5
11.1
(2)
BC(2)
10161
24
3.7
13.9
15.7
Fem.Par. 10084-G
35
7.5
56.9
21.3
Longhead
Mal.Par.
10097-W
17
1.7
3.0
10.2
Shorthead
F1 10126
44
4.9
24.3
11.1
Longhead
F2 10147
36
8.2
67.4
22.7
(3)
BC(2)
10164
34
7.8
60.7
23.0
BC(2)
10165
32
6.8
45.8
21.1
Fem.Par. 10085-G
32
4.8
23.1
15.0
Longhead
Mal.Par. 10100-W
23
4.0
15.8
17.1
Shorthead
Fl
10127
34
3.9
15.4
11.6
Longhead
F2
10148
32
5.5
30.0
17.2
(4)
BC(2)
10168
31
3.5
12.1
11.1
Fem.Par. 10089-E
41
4.1
17.1
10.1
Longhead
Mal.Par. T23DBE
18
1.3
1.7
7.3
Shorthead
Fl
10130
33
2.3
5.3
7.0
Longhead
F2
10149
29
4.9
23.6
16.5
(6)
BC(2)
10176
27
5.4
30.0
20.5
Fem.Par. 10090-E
40
4.2
17.5
10.5
Longhead
Mal.Par.
T23B
17
2.3
5.4
13.5
Shorthead
F1
10131
33
4.2
17.2
12.4
Longhead
(7)
F2
10150
29
5.8
33.9
20.2
BC(l)
10166
29
5.5
30.3
19.2

Table 1>.2B: Generation Means for Head length in 1987.
(End)
Standard
Cross
Family
Mean Deviation
variance c.v.
Trait
--------------------------------------------------------
(7)
BC(2)
10167
24
3.9
14.9
16.2
Fem.Par. 10092-E
40
3.8
12.1
8.6
Longhead
Mal.Par. 10100-W
23
4.0
15.8
17.1
Shorthead
F1
10132
37
3.4
11.6
9.3
Longhead
F2
10152
32
5.6
31.6
17.7
(8)
BC(2)
10169
31
4.9
24.1
15.6
Fem.Par. 10115-T
19
1.7
2.8
9.0
Shorthead
Mal.Par. 10086-G
50
10.4
107.8
20.7
Longhead
F1
10141
27
5.6
31.4
20.6
Shorthead
(15)
F2
10159-1
27
4.5
20.0
16.9
Table 28C :Generation Means for Total head seed weight
in 1987
Standard
Cross
Family
Mean
Ddeviation
Variance
C.v.
Fem.Par. 10080-G
4.1
6.4
40.9
157.9
Mal.Par. T23DBE
0.8
0.6
0.4
78.6
F1
10123
20.4
6.8
46.0
33.2
(1)
F2
10145
10.7
8.0
63.3
74.4
BC(1)
10162
17.4
11.8
140.2
68.1
BC(2)
10175
9.1
7.3
53.3
80.5

Table A2C: Generation Means for Total head seed weight
in 1987 (cont.)
standard
Cross
Family
Mean
Deviation
Variance
c.v.
Fem.Par. 10081-G
4.9
5.0
25 .. 3
102.6
Mal.Par. T23B
1.0
0.6
0.4
60.9
F1
10125
13.9
7.5
55.5
53.8
F2
10146
10.4
7.2
52.0
69.6
(2)
BC(l)
10163
16.9
8.6
74.2
51.0
BC(2)
10161
12.1
7.6
58.2
63.1
Fem.Par. 10084-G
9.9
11.6
134.4
117.7
Mal.Par. 10097-W
2.9
3.0
8.8
101.4
F1
10126
25.1
10.0
100.8
40.0
F2
10147
10.4
9.2
84.6
88.4
(3)
BC(2)
10164
10.4
9.4
88.2
90.5
BC(2)
10165
14.7
10.8
117.2
73.6
Fem.Par. 10085-G
11.0
9.2
85.2
83.8
Mal.Par. 10100-W 10.8
10.8
116.7
100.0
F1
10127
22.6
10.6
112.7
47.0
(4)
F2
10147
10.1
7.0
49.6
69.7
BC(2)
10168
27.1
9.7
93.6
35.7
Fem.Par. 10089-E
3.5
1.8
3.2
51.7
Mal.Par. T23DBE
0.8
0.6
0.4
78.6
Fl
10130
13.1
3.2
10.1
24.3
F2
10149
8.3
5.2
26.9
62.8
(6)
BC(2)
10176
7.6
6.1
37.5
81.1

Table A2C: Generation Means for Total head seed weight
in 1987 (Cont. )
Standard
Cross
Family
Mean Deviation
Variance
C.V.
------------------------------------------------------
Fem.Par. 10090-E
2.9
1.5
2.3
52.2
Mal.Par. T23B
1.0
0.6
0.4
60.9
F1
10131
16.7
6.3
40.2
38.0
(7)
F2
10150
7.6
6.0
36.1
78.7
BC(l)
10166
5.9
4.5
20.5
76.7
BC(2)
10167
7.1
5.0
25.4
71.5
Fem.Par. 10092-E
3.2
1.6
2.7
50.6
Mal.Par.
10100-W 10.8
10.8
116.7
100.0
F1
10132
19.3
6.8
45.7
35.0
(8)
F2
10152-1 17.2
10.4
107.4
60.3
BC(2)
.10169
25.8
9.1
83.0
35.3
Fem.Par. 10095-T
2.8
1.8
3.2
65.1
Mal.Par.
10101-W 12.2
12.2
149.7
100.7
(9)
F1
10135
21.8
9.5
89.5
43.3
F2
10153
11.7
8.5
72.5
72.6
Fem.Par.
10105-W 10.3
7.4
54.0
71.5
Mal.Par. T23DBE
0.8
0.6
0.4
78.6
(10)
F1
10136
23.0
7.0
49.2
30.5
F2
10154
10.8
6.7
44.6
61.9
Fem.Par. 10111-T
1.1
1.5
2.4
136.5
Mal.Par. 10108-W
6.7
5.0
24.8
74.8
F1
10137
20.2
9.0
81.9
44.8
(11)
- ~ ~.55
9.9
S.7
75.4
87.8

nL. -.
Table ......... ........
Generat~~~ Means I:CZ Tote' ~~ad seed weiC"~"
in 1987 (End)
Standard
Cross
Family
Mean Deviation
variance
c.v.
------------------------------------------------------
Fem.Par. 10113-T
2.6
2.8
7.9
108.7
Mal.Par.
10101-W 12.2
12.2
149.7
100.7
F1
10138
24.8
10.7
114.9
43.2
(12)
F2
10156
11.4
10.0
100.0
88.3
Fem.Par. 10114-T
3.4
2.9
8.4
85.1
Mal.Par. T23DBE
0.8
0.6
0.4
78.6
F1
10139
23.1
6.1
37.4
26.5
(13)
F2
10158
8.1
6.4
41.4
79.5
BC(2)
10181
8.8
5.9
34.6
66.8
Fem.Par. 10113-T
2.6
2.8
7.9
108.7
Mal.Par.
10109-W
6.8
8.5
72.3
125.4
Fl
10138*
24.8
10.7
7.9
108.7
(14)
F2
10157
9.7
7.7
58.5
79.3
BC(2)
10172
3.6
6.1
37.3
170.1
Fem.Par. 10115-T
2.1
2.0
4.0
94.8
Mal.Par.
10087-G
9.5
8.7
76.1
91.6
F1
10141
29.6
10.3
105.1
34.6
(15)
F2
10159
19.2
12.2
148.3
63.4
Fem.Par. 10118-T
2.7
2.9
8.3
107.3
Mal.Par. T23DBE
0.8
0.6
0.4
78.6
F1
10142
22.8
4.9
24.4
21.7
(16)
F2
10160
12.3
9.9
97.3
80.1
BC(2)
10183
3.0
4.2
18.0
142.9

Table A2D: Generation Means for lOO-seed weight (g)
1987
Standard
Cross
Family
Mean
Deviation
variance c.v.
Trait
-------------------------------------------------------
Fem.Par. 10084-G
0.69
0.29
0.08
41.4
MS
Mal.Par.
10097-W
1.08
0.19
0.04
17.8
LS
F1
10126
1.52
0.19
0.04
12.6
LS+
F2
10147
1.31
0.28
0.08
21.6
(3)
BC(2)
10164
1.37
0.26
0.07
19.1
BC(2)
10165
1.45
0.22
0.05
15.0
Fem.Par. 10085-G
0.78
0.16
0.03
21.1
Mal. Par. 10100-W
1.48
0.29
0.08
19.2
F1
10127
1.00
0.26
0.07
25.7
(4)
F2
10147
1.08
0.22
0.05
20.1
BC(2)
10168
1.48
0.16
0.02
10.4
Fem.Par. 10092-E
0.74
0.11
0.01
14.7
Mal.Par.
10100-W
1.48
0.29
0.08
19.2
F1
10132
1.26
0.19
0.04
14.9
(8)
F2
10152
1.44
0.25
0.6
17.1
Fem.Par. 10095-T
1.18
0.13
0.02
10.8
Mal.Par. 10101-W
1.60
0.24
0.06
15.0
F1
10135
1.70
0.20
0.04
11.6
(9)
F2
10153
1.39
0.25
0.06
18.1
Pem.Par.
10105-W
1.08
0.28
0.08
25.7
Mal.Par. T23DBE
0.51
0.08
0.01
15.8
F1
10136
1.24
0.14
0.02
11.3
(10)
F2
10154
1.18
0.32
0.10
27.0
BC(2)
10177
0.57
0.20
0.04
35.5

Table A2D: Generation Means for lOO-seed weight (g)
in 1987
(Cont. )
Standard
Cross
Family
Mean Deviation
Variance C.V.
Trait
-------------------------------------------------------
Fem.Par. 10111-T
1.06
1.19
0.03
18.0
LS
Mal.Par. 10108-W
1.00
0.30
0.09
30.2
LS
F1
10137
1.80
0.22
0.05
12.0
LS+
(11)
F2
10155
1.45
0.30
0.09
21.0
BC(2)
10171
1.00
0.31
0.10
31.4
Fem.Par. 10113-T
1.33
1.55
2.39
116.2
LS
Mal.Par. 10101-W
1.60
0.24
0.06
15.0
LS
F1
10138
1.85.
0.26
0.07
14.3
W+
(12)
F2
10156
1.41
0.33
0.11
23.4
BC(2)-
10170
1.31
0.24
0.06
18.1
Fem.Par. 10114-T
1.24
0.19
0.04
15.7
LS
Mal. Par. T23DBE
0.51
0.08
0.01
15.8
SS
F1
10139
1.19
0.14
0.02
12.1
LS
(13)
F2
10158
1.07
0.30
0.09
28.4
BC(2)
10181
0.87
0.26
0.07
29.6
Fem.Par. 10113-T
1.33
1.55
2.40
116.2
LS
Mal.Par. 10109-W
1.05
0.25
0.06
23.5
LS
F1
10138*
1.85
0.26
0.07
14.3
T+
(14)
F2
10157
1.35
0.31
0.10
23.3
BC(2)
10172
0.99
0.24
0.06
24.3

Table A2D: Generation Means for lOO-seed weight (g)
in 1987
(End)
Standard
Cross
Family
Mean Deviation
Variance C.V.
Trait
-------------------------------------------------------
Fem.Par. 10115-T
1.09
0.26
0.07
23.8
LS
Mal.Par. 10087-G
0.85
0.18
0.03
20.9
MS
Fl
10141
1.40
0.20
0.04
14.5
LS+
(15)
F2
10159
1.17
0.26
0.07
22.1
Fem.Par. 10118-T
1.19
0.24
0.06
20.8
LS
Mal.Par. T23DBE
0.51
0.08
0.01
15.8
SS
Fl
10142
1.15
0.13
0.02
11.1
LS
(16)
F2
10160
1.05
0.27
0.07
25.6
BC(2)
10183
0.54
0.08
0.03
33.8
E = T18BE; G = Gero; MP = mid-parent ; T = Togo;
W = Walor; N = number of observations per family.
LS = large seed; MS = mid-sized seed; SS = small seed.
LS+ = overdominance.
F2 1 s and BC's are pooled in this table.

.
Table 1\\31\\
Generation Means for
log10(Days to flowering)
in 1987.
Cross
Family
N
Range
Mean
Variance
C.V. Trait
----------------------------------------------------------
Fem.Par.
10080-G
45
1.75-1.88
1.82
0.0008
1.57
Late
Mal.Par.
23DBE
41
1.67-1.67
1.67
0.0000
0.00
Early
F1
10123
60
1.56-1.85
1.72
0.0060
4.53
Early
F2
10145-1 176
1.57-1.85
1.72
0.0046
3.90
(1)
F2
10145-2 154
1.58-1.83
1. 71
0.0046
3.90
F2
10145-3 166
1.56-1.84
1.72
0.0044
3.80
F2
10145-4 195
1.57-1.81
1.70
0.0032
3.40
F2
10145-5 187
1.48-1.88
1.72
0.0045
3.90
F2
10145-6 148
1.54-1.85
1.71
0.0042
3.80
BC(l)
10162-1
95
1.38-1.88
1.81
0.0031
3.10
BC(l)
10162-2 119
1.67-1.87
1.78
0.0011
1.90
BC(l)"
10162-3
33
1. 67-1. 86
1.78
0.0020
2.60
----------------------------------------------------------
Fem.Par.
10084-G
49
1.78-1.87
1.82
,0.0004
1.10
Late
Mal.Par.
10097-W
59
1. 64-1.76
1.68
0.0005
1.31
Early
F1
10126
51
1.70-1.80
1.75
0.0006
1.53
F2
10147-1 107
1.66-1.83
1.75
0.0014
2.20
(3)
F2
10147-2 108
1. 59-1. 81
1.74
0.0009
1.70
F2
10147-3
99
1.66-1.82
1.75
0.0010
1.80
F2
10147-4 137
1.69-1.80
1.75
0.0007
1.50
F2
10147-5 115
1.62-1.80
1.74
0.0007
1.50
F2
10147-6 121
1.66-1.81
1.74
0.0008
1.60

Table A3A : Generation Means for log10(days to flowering)
in 1987 (continued).
Cross
Family
N
Range
Mean Variance C.V. Trait
----------------------------------------------------------
BC(2)
10164-1 120
1.66-1.83
1.74
0.0007
1.60
(3)
BC(2)
10164-2 125
1.66-1. 79
1.73
0.0010
1.90
BC(2)
10164-3 112
1.67-1.81
1.74
0.0008
1.70
----------------------------------------------------------
Fem.Par.
10085-G
72
1. 76-1.86
1.81
0.0004
1.06
Late
Mal.Par.
10100-W
28
1.60-1.70
1. 66
0.0006
1.47
Early
Fl
10127
62
1. 70-1. 83
1.76
0.0012
1.98
Late
F2
10148-1
76
1.70-1. 85
1.76
0.0008
1.63
(4)
F2
10148-2 123
1. 70-1.84
1.77
0.0008
1.56
F2
10148-3 118
1.66-1. 79
1.71
0.0011
1.96
F2
10148-4 110
1.69-1.82
1.76
0.0006
1.42
F2
10148-5 125
1.56-1.86
1.77
0.0013
2.04
F2
10148-6 137
1.57-1.86
1.76
0.0009
1.69
BC(2)
10168-1 116
1. 60-1. 75
1.67
0.0007
1.54
----------------------------------------------------------
Fem.Par. 10090-E
76
1.61-1.67
1.64
0.0002
0.83
Early
Mal.Par.
T23B
57
1. 83-1.86
1.84
0.0000
0.32
Late
F1
10131
43
1.75-1.83
1.79
0.0002
0.76
Late
F2
10150-1
00
(7)
F2
10150-2 203
1.56-1.88
1.77
0.0066
4.58
F2
10150-3 191
1.57-1.88
1.75
0.0072
4.86
F2
10150-4 195
1.58-1.88
1.76
0.0069
4.71
F2
10150-5 175
1.59-1.88
1.77
0.0061
4.41
F2
10150-6 161
1. 36-1. 88
1.76
0.0085
5.26

Table A3A : Generation Means for log10(days to flowering)
in 1987 (End).
Cross
Family
N
Range
Mean
Variance C.V.
Trait
BC(l)
10166-1 159
1.40-1.88
1.76
0.0090
5.40
(7)
BC(l)
10166-2 186
1.32-1.88
1.78
0.0071
4.80
BC(l)
10166-3
83
1.57-1.87
1.76
0.0076
5.00
Fem.Par. 10118-T
54
1.59-1.72
1.63
0.0007
1.62
Early
Mal.Par.
10087-G
52
1.73-1.83
1.79
0.0005
1.28
Late
Fl
10141
11
1.56-1.74
1.65
0.0020
2.74
Early
F2
10159-1 166
1.59-1.86
1.72
0.0023
2.76
F2
10159-2 168
1.57-1.85
1.73
0.0024
2.84
F2
10159-3 138
1.57-1.84
1.72
0.0026
2.98
F2
10159-4 144
1.60-1.84
1.72
0.0031
3.24
F2
10159-5 177
1.60-1.81
1.72
0.0020
2.58
F2· 10159-6 150
1.60-1.81
1.72
0.0020
2.61
N = the number of observations in the family.
E = T18BE ; G = Gero ; T = Togo ; W = Walor.

Table A3B : Generation Means for log10(Head length)
in
1987.
Cross
Family
N
Range
Mean
variance c.v.
Trait
----------------------------------------------------------
Fem.Par. 10080-G
45
1.52-1. 73
1.63
0.0024
3.00
Long
Head
Mal.Par. T23DBE
41
1.18-1.32
1.25
0.0009
2.40 Short
Head
F1
10123
60
1.34-1.60
1.46
0.0032
3.87
Long
(1)
Head
F2
10145-1 176
1.15-1. 62
1.42
0.0098
6.90
F2
10145-2 154
1. 26-1. 66
1.46
0.0071
5.80
F2
10145-3 166
1.27-1.64
1.43
0.0077
6.20
F2
10145-4 195
1.15-1.66
1.45
0.0086
6.40
F2
10145-5 187
1.11-1. 72
1.45
0.0112
7.30
F2
10145-6 148
1. 26-1. 68
1.47
0.0059
5.20
BC(2)
10175-1
11
1.30-1.53
1.44
0.0064
5.60
BC(2)
10175-2
87
1.26-1.58
1.44
0.0059
5.40
BC(2) .
10175-3
8
1. 30-1. 51
1.38
0.0040
4.60
BC(2)
10175-4
22
1.28-1.54
1.40
0.0066
5.80
---------------------------------------------------------
Fem.Par. 10081-G
63
1.28-1. 71
1.55
0.0078
5.70
Long
Head
Mal.Par. T23B
57
1.15-1.34
1.24
0.0020
3.59 Short
Head
F1
10125
62
1.40-1.61
1.49
0.0021
3.07
Long
(2)
Head
F2
10146-1 127
1.26-1.59
1.43
0.0052
5.00
F2
10146-3 127
1.32-1.59
1.46
0.0029
3.70
F2
10146-4 150
1. 20-1. 58
1.40
0.0056
5.40
F2
10146-5 105
1. 30-1.56
1.43
0.0030
3.90
BC(2)
10161-1 193
1.15-1.51
1.35
0.0036
4.45
BC(2)
10161-2 164
1.26-1. 56
1.39
0.0042
4.68

Table A3B : Generation Means for log10(Head length)
in 1987.
(Cont. )
Cross
Family
N
Range
Mean
Variance
C.V.
Trait
---------------------------------------------------------
BC(2)
10161-3 155
1.20-1.54
1.36
0.0037
4.46
(2)
BC(2)
10161-4 149
1.18-1.54
1.37
0.0045
4.88
BC(2)
10161-5 144
1.23-1.61
1.39
0.0050
5.09
----------------------------------------------------------
Fem.Par.10084-G
49
1.32-1.71
1.55
0.0077
5.69
Long
Head
Mal. Par. 10097-W
59
1.11-1.30
1.23
0.0021
3.69 Short
Head
F1 10126
51
1.56-1.74
1.64
0.0023
2.90
Long
Head
F2 10147-1 107
1.28-1.85
1.57
0.0139
7.50
(3)
F2 10147-2 108
1.23-1.79
1.59
0.0102
6.40
F2 10147-3
99
1.36-1.70
1.56
0.0055
4.80
F2 10147-4 137
1.32-1.79
1.55
0.0090
6.10
F2 10147-5 115
1.28-1.72
1.53
0.0081
5.90
F2·10147-6 121
1.30-1.63
1.49
0.0048
4.70
BC(2)
10164-1 120
1.28-1.69
1.52
0.0090
6.20
BC(2)
10164-2 125
1.28-1.75
1.51
0.0108
6.90
BC(2)
10164-3 112
1.28-1.72
1.51
0.0106
6.80
---------------------------------------------------------
Fem.Par.10085-G
72
1. 34-1. 62
1.50
0.0045
4.46
Long
Head
Mal.Par.10100-W
28
1.18-1.49
1.36
0.0058
5.58 Short
Head
F1 10127
62
1.41-1.64
1.53
0.0026
3.31
Long
Head
F2 10148-1
76
1.20-1.67
1.50
0.0088
6.28
(4)
F2 10148-2 123
1.08-1.68
1.52
0.0071
5.52
F2 10148-3 118
1.38-1.67
1.52
0.0037
4.01
F2 10148-4 110
1.26-1.61
1.49
0.0055
4.98

Table A3B : Generation means for log10(Head length)
(Cont.).
Cross
Family
N
Range
Mean
Variance C.V.
Trait
F2 10148-5 125
1.15-1.64
1.48
0.0059
5.22
(4)
F2 10148-6 137
1.26-1.60
1.46
0.0046
4.66
BC(2)
10168-1 116
1.38-1.60
1.49
0.0022
3.18
Fem.Par.10090-E
74
1.51-1.70
1.61
0.0019
2.74
Long
Head
Mal.Par.T23DBE
41
1.18-1.32
1.25
0.0009
2.40 Short
Head
F1 10130
58
1.43-1.57
1.52
0.0009
2.03
Long
Head
F2 10149-1 166
1.20-1.78
1.41
0.0048
5.28
(6)
F2 10149-2 168
1.26-1.58
1.42
0.0037
6.49
F2 10149-3 138
1.28-1.57
1.44
0.0034
4.65
F2 10149-4 144
1.11-1.61
1.40
0.0059
4.94
F2 10149-5 177
1.23-1.95
1.40
0.0044
4.70
F2 10149-6 150
1.23-1.54
1.43
0.0037
5.00
BC(2)
10176-1
49
1.20-1.60
1.44
0.0074
5.97
BC(2)
10176-2 112
1.15-1.58
1.40
0.0090
6.80
BC(2)
10176-3
36
1.26-1.60
1.42
0.0085
6.50
Fem.Par.10090-E
76
1.46-1.67
1.59
0.0023
2.98
Long
Head
Mal.Par. T23B
57
1.15-1.34
1.24
0.0020
3.59 Short
Head
F1 10131
43
1.40-1.66
1.52
0.0025
3.25
Long
Head
F2 10150-1
00
(7)
F2 10150-2 203
1.20-1.57
1.39
0.0058
5.46
F2 10150-3 191
1.36-1.67
1.51
0.0042
4.29
F2 10150-4 195
1.18-1.61
1.42
0.0058
5.37
F2 10150-5 175
1.23-1.60
1.42
0.0053
5.16

Table A3B : Generation Means for log10(Head length).
(End.)
Cross
Family
N
Range
Mean
Variance C.V. Trait
F2
10150-6 161
1.26-1.66
1.51
0.0046
4.46
(7)
BC(2)
10167-2 194
1.17-1.54
1.34
0.0044
4.80
Fem.Par. 10092-E
79
1.45-1.68
1.60
0.0016
2.46
Long
Head
Mal.Par.
10100-W
28
1.18-1.49
1.36
0.0058
5.58 Short
Head
F1
10132
31
1.48-1.64
1.56
0.0016
2.59
Long
Head
F2
10152-1 164
1.32-1.65
1.49
0.0052
4.85
(8)
F2
10152-2 107
1.26-1.68
1.50
0.0071
5.58
F2
10152-3 122
1.26-1.67
1.49
0.0069
5.53
F2
10152-4
96
1.28-1.64
1.51
0.0045
4.42
(8)
F2
10152-5 115
1.28-1.68
1.50
0.0067
5.46
F2
10152-6 123
1.28-1.66
1.48
0.0066
5.50
BC(2)·
10169-1
63
1.32-1.60
1.48
0.0037
4.12
BC(2)
10169-2
61
1.28-1.65
1.50
0.0058
5.03
Fem.Par. 10118-T
54
1.15-1.34
1.27
0.0016
3.20 Short
Head
Mal.Par. 10087-G
52
1.40-1.86
1.71
0.0128
6.62 Long
Head
F1
10141
11
1.34-1.61
1.43
0.0064
5.59 Short
Head
F2
10159-1 166
1.20-1.78
1.41
0.0048
4.86
(15)
F2
10159-2 168
1.26-1.58
1.42
0.0037
4.27
F2
10159-3 138
1.28-1.57
1.44
0.0034
4.04
F2
10159-4 144
1.11-1.61
1.40
0.0055
5.52
F2
10159-5 177
1.23-1.95
1.40
0.0045
4.74
F2
10159-6 150
1.23-1.54
1.43
0.0037
4.30
---------------------------------------------------------
E = T18BE; G = Gero; T = Togo; W = Walor;
N = n\\;w~e~ of ozsr~atior~

Table A3C : Generation Means for log10(100*100-seed
weight)
in 1987.
Cross
Family
N
Range
Mean
Variance c.v. Trait
---------------------------------------------------------
Fem.Par.
10084-G
48
1. 30-2 .11
1.80
0.0351
10.39
MS
Mal.Par. 10097-W
54
1.87-2.19
2.02
0.0061
3.85
LS
F1
10126
51
2.02-2.29
2.18
0.0027
2.37
LS
F2
10147-1
97
1.52-2.30
2.10
0.0144
5.70
(3)
F2
10147-2
87
1.67-2.28
2.10
0.0128
5.40
F2
10147-3
95
1. 74-2.28
2.15
0.0100
4.60
F2
10147-4 112
1. 78-2.24
2.08
0.0092
4.70
F2
10147-5
95
1.86-2.37
2.12
0.0083
4.30
F2
10147-6
98
1.65-2.27
2.11
0.0088
4.50
-----------------------------------------------------------
Fem.Par. 10085-G
71
1.62-2.08
1.80
0.0090
5.03
MS
Mal.Par.
10100-W
28
1.92-2.30
2.16
0.0087
4.32
LS
F1·
10127
62
1. 54-2 .17
1.98
0.0183
6.83
MP
F2
10147-1
66
1.93-2.24
2.07
0.0037
2.93
F2
10147-2 121
1. 82-2 .22
2.08
0.0042
3.12
(4)
F2
10147-3 111
1.08-2.20
2.03
0.0130
5.63
F2
10147-4 110
1.76-2.17
1.97·
0.0079
4.53
F2
10147-5 124
1. 62-2 .14
1.97
0.0081
4.60
F2
10147-6 136
1. 73-2.20
2.03
0.0079
4.36
BC(2)
10168-1 116
2.02-2.26
2.17
0.0022
2.17
Fem.Par.
10092-E
76
1.69-2.06
1.87
0.0034
3.12
MS
Mal.Par.
10100-W
28
1.92-2.30
2.16
0.0087
4.32
LS
F1
10132
30
1.99-2.21
2.10
0.0027
2.47
LS
(8)
F2
10152-1
163
1.78-2.27
2.12
0.0071
3.94

Table A3C : Generation Means for log10(100*100-seed
weight)
in 1987. (Cont.)
Cross
Family
N
Range
Mean Variance
C.V. Trait
---------------------------------------------------------
F2 10152-2
104
1.95-2.33
2.16
0.0066
3.77
F2 10152-3
122
1.81-2.29
2.16
0.0074
3.98
F2 10152-4
96
1.74-2.26
2.16
0.0052
3.35
(8)
F2 10152-5
113
1. 88-2.32
2.16
0.0058
3.50
F2 10152-6
122
1.92-2.30
2.15
0.0056
3.50
---------------------------------------------------------
Fem.Par.1009S-T
15
1.96-2.15
2.07
0.0024
2.35
LS
Mal.Par.10101-W
35
2.04-2.32
2.20
0.0045
3.06
LS
F1 10135
49
2.05-2.32
2.23
0.0027
2.34
W
F2 10153-1
94
1. 99-2.32
2.16
0.0088
18.13
(9)
F2 10153-2
127
1.77-2.28
2.10
0.0088
4.45
F2 10153-3
113
1. 75-2.30
2.11
0.0083
17.21
F2 10153-4
90
1.72-2.31
2.14
0.0088
4.37
F2 10153-5
141
1.80-2.31
2.15
0.0067
3.82
----------------------------------------------------------
Fem.Par.10105-W
53
1.79-2.20
2.03
0.0110
5.17
LS
Mal.Par.T23DBE
1
1. 76-1. 76
1.76
0.0000
0.00
SS
F1 10136
45
1.93-2.17
2.09
0.0030
2.52
LS
F2 10154-1
165
1.72-2.25
2.08
0.0086
4.45
F2 10154-2
159
1.62-2.88
2.05
0.0144
5.83
(10)
F2 10154-3
133
1. 75-2 .21
2.00
0.0074
4.32
F2 10154-4
174
1.34-2.29
2.06
0.0108
5.07
F2 10154-5
152
1.78-2.30
2.09
0.0076
4.16
F2 10154-6
162
1. 86-2.27
2.08
0.0066
3.88

Table A3C: Generation Means for log10{100*100-seed
weight)
in 1987.
(Cont. )
Cross
Family
N
Range
Mean
Variance
c.v.
Trait
---------------------------------------------------------
Fem.Par.10111-T
13
1.86-2.15
2.02
0.0062
3.91
LS
Mal.Par.10108-W
42
1.53-2.22
1.98
0.0218
7.48
LS
Fl 10137
31
2.16-2.32
2.26
0.0015
1. 73
T
(11)
F2 10155-1
82
1.78-2.29
2.14
0.0085
4.29
F2 10155-2 103
1.52-2.32
2.14
0.0125
5.22
F2 10155-3 136
1.74-2.30
2.12
0.0125
5.26
F2 10155-4 108
2.01-2.34
2.19
0.0048
3.17
F2 10155-5 110
1.65-2.31
2.14
0.0110
4.91
F2 10155-6
80
1. 93-2.36
2.18
0.0094
4.46
-------------------------------------------------------
Fem.Par.l0113-T
45
1.78-2.25
2.03
0.1016
2.01
IS
Mal. Par".10101-W
35
2.04-2.32
2.20
0.0045
3.06
IS
F1 10138
41
2.14-2.35
2.28
0.0019
1.93
W
F2 10156-1 121
1.41-2.35
2.14
0.0193
6.25
F2 10156-2
85
1.59-2.29
2.09
0.0154
5.94
(12)
F2 10156-3
53
1. 63-2.26
2.09
0.0193
6.56
F2 10156-4
65
1.79-2.29
2.16
0.0072
3.92
F2 10156-5
97
1. 75-2.31
2.05
0.0130 18.50
F2 10156-6 111
1.72-2.30
2.15
0.0132
5.33
--------------------------------------------------------
Fem.Par.10114-T
45
1.93-2.21
2.09
0.0050
3.39
IS
Mal.Par.T23DBE
1
1.76-1. 76
1.76
0.0000
0.00
SS
Fl 10139
48
1.96-2.19
2.07
0.0028
2.53
IS
(13)
F2 10158-1 131
1. 61-2.21
2.03
0.0104
5.03
~

<-
.-
159
1.4C:::--·
~l
1. 98
O.C::-=-=
8.32

Table A3C: Generation Means for log10(100*100-seed
weight)
in 1987. (Cont.)
Cross
Family
N
Range
Mean
Variance
c.v. Trait
---------------------------------------------------------
F2
10158-3 176
1.38-2.25
1.98
0.0231
7.66
(13)
F2
10158-4 161
1. 49-2 .24
2.05
0.0182
6.57
F2
10158-5 182
1.46-2.28
2.02
0.0210
7.17
F2
10158-6 131
1.08-2.23
1.99
0.0346
9.38
BC(2)
10181-1 137
1.15-2.18
1.92
0.0237
8.03
BC(2)
10181-2
9
1.58-2.07
1.82
0.0279
9.14
BC(2)
10181-3 150
1. 60-2.18
1.92
0.0180
6.98
--------------------------------------------------------
Fem.Par.
10113-T 45
1.78-2.25
2.03
0.0103
2.01
LS
Mal.Par. 10109-W 57
1. 74-2.18
2.02
0.0103
5.03
LS
Fl
10138
41
2.14-2.35
2.28
0.0019
1.93
LS+
F2 10157-1 123
1. 75-2.29
2.11
0.0100
4.76
(14)
F2 10157-2 117
1.66-2.30
2.09
0.0147
5.80
F2 10157-3 131
1. 26-2.36
2.14
0.0180
6.25
F2 10157-4 123
1. 73-2.37
2.14
0.0106
4.80
F2 10157-5 116
1. 63-2.31
2.14
0.0108
4.84
F2 10157-6 131
1. 76-2.34
2.08
0.0094
4.66
---------------------------------------------------------
Fem.Par.
10118-T 45
1. 93-2.21
2.09
0.0050
3.39
LS
Mal.Par.
10087-G 44
1.52-2.10
1.90
0.0167
6.82
MS
F1
10141
48
1.96-2.19
2.07
0.0028
2.53
LS
F2 10159-1 158
1.34-2.30
2.01
0.0161
6.32
(15)
F2 10159-2 165
1.65-2.30
2.09
0.0104
4.88
F2 10159-3 130
1. 68-2.23
2.07
0.0100
4.84

Table A3C: Generation Means for log10(100*100-seed
weight)
in 1987.
(End)
Cross
Family
N
Range
Mean
Variance
C.V.
Trait
---------------------------------------------------------
F2 10159-4 141
1.68-2.22
2.04
0.0100
4.90
(15)
F2 10159-5 175
1.77-2.21
2.04
0.0072
4.18
F2 10159-6 150
1.68-2.24
2.09
0.0121
5.28
---------------------------------------------------------
Fem.Par.10118-T 25
1.80-2.24
2.07
0.0100
4.84
LS
Mal.Par.T23DBE
1
1.76-1.76
1.76
0.0000
0.00
ss
F1
10142
56
1.94-2.18
2.06
0.0023
2.32
LS
F2 10160-1 164
1.41-2.16
1.98
0.0135
5.84
(16)
F2 10160-2 161
1.43-2.28
2.03
0.0195
6.90
F2 10160-3 157
1.36-2.24
2.02
0.0224
7.40
F2 10160-4 142
1.18-2.18
1.97
0.0228
7.64
F210160-5 173
1.38-2.22
2.01
0.0161
6.33
F2 10160-6 140
1.20-2.26
2.00
0.0180
7.00
BC(2)
10183-1
25
1.46-2.03
1.71
0.0152
7.22
E = T18BE: G = Gero: MP = mid-parent : T = Togo:
W = Walor: N = number of observations per family.
LS = large seed: MS = mid-sized seed; SS = small seed.
LS+ = overdominance.

Table A4: ANOVA over within cultivar data (loglO)
in 1987
CUl-
Source
Head
tivar
of var.
A N 0 V A
Maturity
length
--------
Late
Family
F test
30.0 **
Prob.
0.0001
long-
Reps
F test
3.1 *
2.5 *
3.2.
1'"
head
Prob.
0.0145
\\1.5 ••
0.0443
0.0141 O'()()01
Gero
Fam.*Reps
F test
1.1 ns
1.3 ns
1.0 nn
Prob.
0.3628
0.1662
O
l.o ••
.4 !j')O
O.OO()l
-------- ------
Early
Family
F test
6.1 **
------
5.9 **
5.1 ••
B.J ••
Probe
0.0001
0.0001
0.000], C).OOOl
long-
Reps
F test
20.8 **
4.5 **
head
Prob.
0.0001
0.0001
T18BE Fam.*Reps
F test
3.2 **
4.0 **
2.ft..
..
Prob.
0.0001
0.0001
o
~.7 ••
.0002 O.OOOl
-------- ------
Early
Family
F test
17.8 **
4.6 **
------
Prob.
0.0001
0.0001
large
Reps
F test
2.2 ns
0.9 ns
0.5no
2.3nn
seed
Prob.
0.0713
0.4774
0.7757 O.Oft27
Togo
Fam.*Reps
F test
5.9 **
1.9 **
Prob.
0.0001
~.0039
O. fJno
2. J ••
---_..._---
O. ft(a'JO Cl. OOO(j
-------- ------
Early
Family
F test
16.9 **
40.7 ** 15.4 •• -----
Prob.
0.0001
O 0001
16.9 ••

0.0001
large
0.0001
Reps
F test
4.4 **
5.4 **
0.2no
'"
seed
Prob.
0.0016
0.0003
o
~. n.
.9<\\<\\1 O.02!)],
Walor Fam.*Reps
F test
2.7 **
1.4 *
1." ••
Prob.
0.0001
0.0456
0.0011
1.)nl1
----------------------------------------________
0.(9)7
----------

Table A4: ANOVA over within cultivar data (log10)
in 1987· (End)
CUI-
Source
Head
Head
Seed
tivar
of var.
A N 0 V A
Maturity
length
SW
size
----- --------- ---------- --------- -------- ------ ------
Early
Family
F test
51482.4**
1.8 ns
1.9ns
3.3ns
dwarf
Prob.
0.0001
0.1891
0.1818 0.0796
T23D-
BE &
Reps
F test
1141.8**
0.5 ns
3.3*
1.9ns
Late
Prob.
0.0001
0.7228
0.0256 0.1443
tall
T23B
Fam.*Reps
F test
0.00
0.5 ns
Prob.
1.00
0.7643
----------------------------------------------------------
ns : non significant at p = 0.05; * : significant at
p = 0.05; ** :significant at p < 0.01;
SW = seed weight; Seed size = 100 seed weight.

Table A5: Within eultivar means (log10) comparisons
in 1987
Days to
Head
Head seed
Hundred
Flowering
Length
weight
seed weight
CUltivar Family
(number)
(cm)
( cm )
( g )
Gero
10080
1.83 ab* 1. 63 b
2.18 c
1.74 e
10081
1.83 ab
1.55 e
2.39 e
1.83 cd
10082
1.78 e
1.63 b
2.85 ab
1.89 b
10083
1.82 be
1.57 e
2.30 e
1.87 be
10084
1.83 a
1.55 c
2.71 b
1.81 d
10085
1.81 c
1.50 d
2.84 ab
1.88 b
10086
1.80 d
1.69 a
2.70 b
1.92 b
10087
1.80 d
1.71 a
2.80 ab
1.90 b
Cere
10088
1.79 d
1.56 e
3.0
a
2.0 a
T18BE
10089
1.64 be
1.61 be
2.49 ab
1.89 be
10090
1.64 be
1.60 cd
2.41 be
1.89 b
10091
1.64 e
1.61 ab
2.33 e
1.88 be
10092
1.65 a
1.60 bed
2~45 b
1.87 e
10093
1.643 b
1.62 a
2.41 be
1.87 be
T18BE
10094
1. 640 be 1.59 d
2.55 a
1.92 a
Walor
10096
1.678 a-e 1.273 ef
2.38 be
2.03 cd
10097
1.683 abe 1.230 f
2.25 e
2.02 cd
10098
1.682 a-d 1.282def
2.00 e
2.09 be
10099
1.670 a-f 1.339a-d
2.92 a
1.97 d
10100
1.655 efg 1.360 ab
2.70 ab
2.16 ab
10101
1.670 b-f 1.350abe
2.75 ab
2.20 a
10102
1.663 e-g 1.360 ab
2.31 e
2.19 a

Table A5: Within eultivar means (10910)
comparisons
in 1987 (End.)
Days to
Head
Head seed
Hundred
Flowering
Length
weight
seed weight
CUltivar Family (number)
(cm )
(cm)
( 9 )
Walor
10103
1.671 a-f
1.370 a
2.95 a
2.22 a
10104
1.690 ab
1.334 a-d
2.95 a
2.20 a
10105
1.694 a
1.308 b-e
2.92 a
2.03 cd
10106
1.656 efg
1.240 f
2.82 a
2.03 cd
10107
1.641 9
1.240 f
2.80 a
2.08 be
10108
1.657 d-q
1.300 cde
2.72 ab
1.99 cd
10109
1.648 fg
1.150 9
2.71 ab
2.02 cd
Walor
10110
1.658 c-q
1.256 ef
2.96 a
2.06 cd
Togo
10095
1.677 a
1.283 ab
2.35 a
2.07 abc
10111
1.642 b
1.279 ab
1.84 c
2.02 c
10112
1.621 e
1.276 ab
2.34 a
2.07 ab
10113
1.637 be
1.252 c
2.22 a
2.05 abc
10114
1.622 e
1.285 ab
2.36 a
2.09 a
10115
1.628 cde
1.268 be
2.12ab
2.05 abc
10116
1.633 bed
1.282 ab
2.01bc
2.03 be
10117
1.628 cde
1.278 ab
2.05bc
2.05 abc
Togo
10118
1.626 de
1.289 a
2.17ab
2.07 abc
T23B
10119
1.845 a
1.238a
1.92 a
1.608 a
T23DBE
10120
1.672 b
1.248 a
1.59 a
1.756 a
* : means with the same letter (s) are not significantly
different iDuncan's multiple range test at p = 0.05.
a-f = abcdef and so forth

Table A6: The parents of the backcrosses
in 1986 and 1987
( 1986 )
( 1987 )
Parents
Parents
Cross
BC
Female
Male
Cross
BC
Female
Male
( 1)
9784
Gero
F1
(1)
10175
T23DBE
F1
9801
F1
T23DBE
10162
Gero
F1
(2)
9789
Gero
F1
(2)
10161
P1
T23B
9802
F1
T23DBE
(3)
10165
F1
Walor
(3)
9803
F1
Gero
(4 )
10168
Walor
F1
(7)
9821
F1
Gero
(5)
10173
Gero
F1
(9)
9843
F1
T23DBE
(6)
10176
T23DBE
F1
---------------------------
9844
F1
T23DBE
(7)
10166
F1
T18BE
9845
F1
Togo
10167
P1
T23B
---------------------------
9846
F1
Togo
(8)
10169
Walor
F1
(10)
·9792
Walor
F1
(10)
10177
T23DBE
F1
10178
9793
Walor
F1
10179
,10180
(11)
9796
Walor
F1
-----------------------------
(11)
10171
Walor
P1
(12)
9794
Walor
F1
---------------------------
(12)
10170
Walor
P1
9795
Walor
F1
---------------------------
(13)
10181
T23DBE
PI
9893
F1
T23DBE
10182
(13)
9797
Togo
F1
(14)
10172
Walor
PI
---------------------------
9798
Togo
F1
(16)
10183
T23DBE
F1
10184
9799
Togo
F1
10185
-----------------------------
10186
(14)
9870
F1
T23DBE
9881
F1
T23DBE
9888
PI
Togo

Table A7: Plant and seed characteristics of four near-isogenic pearl millet
inbreds planted at two spacings on 13 May, 1985
=========================:===============================================================
Plant #
Plant Days to 50% Head no. Head no.
Head
Head seed 100 seeds
Yield
Treatment per plot height* heading
per plot per plant length wt (g.)
weight (g) kg/ha
INBRED( 1)1
T23B
32a
89a
75.6b
94b
3.3c
21.9a
9.2a
0.5c
2380a
T23BE
30ab
56b
54.1c
144a
5.4b
17.9c
6.5b
0.7a
2570a
T23DB
28b
50c
79.1a
93b
3.6c
18.0c
5.5c
0.4d
1400b
T3DBE
18c
37d
50.9d
141a
8.5a
19.2b
3.7d
0.6b
1460b
DENSITY(D)1
HIGH
37a
61a
62.7b
130a
3.9b
18.9b
5.7b
0.5b
2010a
LOW
17b
55b
67.2a
106b
6.5a
19.5a
6.7a
0.6a
1900a
A
N
o
v
A
INBRED(I)
0001
0.0001
O.
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
DENSITY(D6.0001
0.0001
0.0001
0.0001
0.0001
0.0004
0.0170
0.0007
0.2700
I x D
0.0001
0.0001
0.0001
0.2953
0.0002
0.0003
0.6817
0.0034
0.0140
cv
13
3
2
8
16
3
20
9
20
Overall Mean
27
58
64.9
118
5.2
19.2
6.2
0.5
1630
1: Duncan's multiple range test at 5% level j
The F test is non significant for p > 0.05.
* : Plant height and head length are in cm.

Table AB: Plant and seed characteristics of four near-isogenic pearl millet
inbreds planted at two spacings on 09 July, 1985
=========================================================================================
Plant #
Plant Days to 50% Head no. Head no.
Head
Head seed 100 seeds
Yield
Treatment per plot height* heading
per plot per plant length
wt (g.) weight (g) kg/ha
INBRED( 1)1
T23B
70a
202a
62.2b
115c
2.6c
20.5a
4.8a
0.6a
1550a
T23BE
68a
130b
47.3c
163a
3.7b
19.0b
3.0b
0.5b
1350b
T23DB
70a
118c
65.4a
105d
2.4d
17.6c
1.lc
0.2c
310d
T23DBE
45b
92d
45.9d
137b
4.0a
19.2b
1. 4c
0.5b
510c
DENSITY (D)1
HIGH
101a
135b
54.8b
137a
1.5b
18.8b
2.4b
0.5a
940a
LOW
25b
137a
55.5a
123b
4.9a
19.4a
2.7a
0.4b
930a
A
N
o
v
A
INBRED(I)
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
DENSITY(D)
0.0001
0.1354
0.0023
0.0009
0.0001
0.0053
0.156
0.0008
0.8900
I x D
0.0001
0.0019
0.0016
0.4885
0.0002
0.5005
0.3888
0.2933
0.9100
cv
8
2
1
7
9
3
21
14
21
Overall Mean
63
136
55.2
130
3.2
19.1
2.6
0.5
780
1: Duncan's mUltiple range test at 5% level; The F test is non significant for p > 0.05.
* : Plant height and head length are in cm

Table A9: Plant and seed characteristics of four near-isogenic pearl millet
inbreds planted at two spacings on 13 June, 1986
=======================================================================================
Plant #
Plant Maturity Head no. Head no.
Head
Head seed 100 seeds
Yield
Treatment per plot height* (days
per plot per plant length
wt (g.) weight (g) kg/ha
INBRED ( I )1
T23B
33b
188a
74.1a
98c
3.6b
18.2b
5.9b
0.60c
1630b
T23BE
39a
133b
47.9c
122a
3.9a
18.9ab
7.0a
0.61bc
2350a
T23DB
37ab
115c
72.2b
72d
2.7c
18.1b
6.3ab
0.63b
1270c
T23DBE
37ab
96d
46.8d
106b
3.7ab
19.2a
6.4ab
0.70a
1830b
DENSITY (D) 1
HIGH
55a
141a
58.4b
110a
2.0b
18.5a
5.9b
0.6a
1780a
LOW
18b
125b
62.2a
90b
4.9a
18.8a
6.9a
0.6a
1755a
A
N
o
v
A
INBRED(I)
0.0737
0.0001
0.0001
0.0001
0.0016
0.0179
0.2866
0.0001
0.0001
DENSITY(D)
0.0001
0.0006
0.0017
0.0056
0.0001
0.2080
0.0396
0.5243
0.7500
I x D
0.1029
0.1085
0.1488
0.0021
0.0339
0.0218
0.0027
0.0329
0.0060
cv
14
4
2
6
10
4
14
6
16
Overall Mean
37
133
60.3
100
3.5
18.6
6.4
0.6
1470
1:
Duncan's multiple range test at 5% level; The F test is non
significant for p > 0.05; * : Plant height and head length are in cm .
, /

Table Al0: Plant and seed characteristics of four near-isogenic pearl millet
inbreds planted at two spacings on 18 July, 1986
==========================================================================================
Plant #
Plant Days to 50% Head no. Head no.
Head
Head seed 100 seeds
Yield
Treatment per plot height* heading
per plot per plant length
wt (g.) weight (g) kg/ha
INBRED{ I)l
T23B
47b
187a
62.7b
92c
2.7c
17.9b
5.2a
0.4c
1320a
T23BE
53a
146b
49.6c
116a
3.2a
18.8a
3.9b
0.6a
1210b
T23DB
46b
110c
64.0a
85d
2.7c
16.4c
2.0c
0.5b
470d
T23DBE
46b
95d
49.1c
103b
3.0b
18.9a
3.4b
0.6a
950c
DENSITY (D) 1
HIGH
75a
138a
55.4b
107a
1. 4b
17.5b
3.1b
0.5a
900b
LOW
21b
130b
57.4a
91b
4.4a
18.5a
4.2a
0.5a
1070a
A
N
o
v
A
INBRED{I)
0.0006
0.0001
0.0001
0.0001
0.0053
0.0001
0.0001
0.0001
0.0001
DENSITY{D)
0.0001
0.0130
0.0062
0.0154
0.0001
0.0009
0.0160
0.7990
0.0004
I x D
0.0012
0.0098
0.0666
0.0087
0.0407
0.3002
0.0004
0.0014
0.0005
cv
7
2
2
6
8
3
14
6
12
Overall Mean
48
134
56.4
99
2.9
18.0
3.6
0.9
820
1:
Duncan's multiple range test at 5% level;
The F test is non
significant for p > 0.05.
* :
Plant height and head length are in cm .

Table All: Chi-square tests for Maturity in 1987 (Cont.)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
------------------------------------------ ---------------
Cross (3)
Early Late
Ratiol
Ratio2
N
F2
63:1
255:1
10147 -
1
97
10
42.1**
220.5**
?
3
10147 -
2
107
1
0.29
0.80
3:
4
8
10147 -
3
94
5
0.24
55.3**
3
6
10147
4
137
o
2.18
0.54
3; 4
25
10147 -
5
115
o
1.83
0.45
3: 4
25
10147 -
6
120
1
0.43
0.59
3;
4
12
Pooled
670
17
3.72
77.0**
3
8
5 D.F. Homogeneity X2 for 63:1
43.4**
5 D.F.
Homogeneity X2 for
255:1 201.2**
Cross (4) Late Early
Ratio 1
Ratio 2
N
F2
63:1
255:1
10148 -
1
75
o
1.21
0.30
3;
4
7
10148 -
2 123
o
1.95
0.48
3;
4
7
10148 -
3 117
1
0.39
0.63
3: 4
25
10148 -
4 110
o
1.75
0.43
3;
4
5
10148 -
5 123
2
0.0
4.7*
3
37
10148 -
6 136
1
0.62
0.41
3; 4
9
Pooled
685
4
4.3*
0.64
4
20
5 D.F. Homogeneity X2 for
63:1
1.61ns
5 D.F. Homogeneity X2 for 255:1
6.3ns
Cross (4)
Late Early
Ratio 1
Ratio 2
BC(2)
1:1
9:7
10168 -
1
62
0.55
I
2;
3;
s

Table All: Chi-square tests for Maturity in 1987 (Cont.)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
x2
culation
------------------------------------------ ---------------
Cross(3)
Early Late
Ratiol
Ratio2
N
F2
63:1
255:1
10147 -
1
97
10
42.1**
220.5**
?
3
10147 -
2
107
1
0.29
0.80
3;
4
8
10147 -
3
94
5
0.24
55.3**
3
6
10147 - 4
137
o
2.18
0.54
3; 4
25
10147 - 5
115
o
1.83
0.45
3; 4
25
10147 -
6
120
1
0.43
0.59
3;
4
12
Pooled
670
17
3.72
77.0**
3
8
5 D.F. Homogeneity X2 for 63:1
43.4**
5 D.F.
Homogeneity X2 for
255:1 201.2**
Cross (4) Late Early
Ratio 1
Ratio 2
N
F2
63:1
255:1
10148 -
1
75
o
1.21
0.30
3: 4
7
10148 -
2 123
o
1.95
0.48
3: 4
7
10148 -
3 117
1
0.39
0.63
J;
4
25
10148 -
4 110
o
1.75
0.43
3; 4
5
10148 -
5 123
2
0.0
4.7*
3
37
10148 -
6 136
1
0.62
0.41
J;
4
9
Pooled
685
4
4.3*
0.64
4
20
5 D.F. Homogeneity X2 for
63:1
1.61ns
5 D.F. Homogeneity X2 for 255:1
6.3ns
Cross(4) Late Early
Ratio 1
Ratio 2
BC(2)
1:1
9:7
54
2;
3; 4

Table All: Chi-square tests for MatUrity in 1987 (End)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
x2
culation
Cross(15) Early Late Ratio1
Ratio2 Ratio3
N
F2
7:1
54:10
225:31
10159 - 1
146
19
0.15
2.11
0.06
2: 3: 4
14
10159 - 2
145
23
0.22
0.48
0.40
2: 3: 4
10
10159 - 3
127
11
2.59
6.1*
2.22
2: 4
7
10159 - 4
123
21
0.57
0.12
0.83
2; 3; 4
4
10159
5
174
2 20.8**
28.0**
20.0**
?
41
10159 -
6
139
11
3.66
7.8**
3.22
2: 4
?
Pooled
854
87
9.1**
29.1**
7.3**
?
6
5 D.F.
Homogeneity X2 for 7:1
18.9**
5 D.F.
Homogeneity X2 for 54:10
15.6*
5 D.F."
Homogeneity X2 for 225:31
19.4**
*: Chisquare (X2 ) significant at p = 0.05
**: X2 significant at p = 0.01; ns = nonsignificant X2 .

Table All: Chi-square tests for Maturity in 1987 (End)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
Cross(15) Early Late Ratio1
Ratio2 Ratio3
N
F2
7:1
54:10
225:31
10159 -
1
146
19
0.15
2.11
0.06
2; 3; 4
14
10159 -
2
145
23
0.22
0.48
0.40
2; 3; 4
10
10159 - 3
127
11
2.59
6.1*
2.22
2; 4
7
10159 -
4
123
21
0.57
0.12
0.83
2 ; ) i 4
4
10159 -
5
174
2 20.8**
28.0**
20.0**
?
41
10159 -
6
139
11
3.66
7.8**
3.22
2; 4
?
Pooled
854
87
9.1**
29.1**
7.3**
?
6
5 D.F.
Homogeneity X2 for 7:1
18.9**
5 D.F.
Homogeneity X2 for 54:10
15.6*
5 D.F.-
Homogeneity X2 for 225:31
19.4**
*: Chisquare (X2 ) significant at p = 0.05
**: x 2 significant at p = 0.01; ns = nonsignificant X2 •

Table All: Chi-square tests for Headlength in 1987 (Cont.)
Ratios with
non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants Chisquare
Values
X 2
culation
------------------------------------------ ---------------
Cross (2)
LH
SH
Ratio 1
Ratio 2
N
F2
63:1
255:1
10146 - 1 125
2
0.00
4.6*
3
5
10146 -
3 127
o
2.02
0.50
3;
4
18
10146 - 4 136
14
58.9**
308.3**
?
4
10146 -
5 105
o
1.67
0.41
3; 4
16
Pooled
493
16
8.3**
99.1**
?
5
3 D.F. Homogeneity x2 for 63:1
54.3**
3 D.F. Homogeneity x2 for 255:1 214.7**
cross (2)
LH
SH
Ratio 1
Ratio 2
BC(2)
7:1
225:31
10161 - 1 165
28
0.71
1.04
3
10161 - 2 151
13
3.14
2.70
3
10161 -
3 135
20
0.02
0.09
3
10161 -
4 134
15
0.81
0.58
3
10161 -
5 139
5
10.7**
10.1**
?
Pooled
724
81
4.4*
3.17
?
4 D.F. Homogeneity x2 for
7:1
4 D.F. Homogeneity X2 for 225:31
11.3*
*: Chisquare (X2 ) significant at p = 0.05
**: X2 significant at p = 0.01: ns = nonsignificant X2 •
La = Longhead
SH = Shorthead

Table All: Chi-square tests for Headlength in 1987 (Cont.)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
------------------------------------------ ---------------
Cross(3)
LH
SH
Ratio 1
Ratio 2
N
F2
63:1
255:1
10147 -
1 106
1
0.27
0.81
3;
4
2
10147 -
2 107
1
0.29
0.80
3:
4
4
10147 -
3
99
o
1.57
0.39
3:
4
9
10147 -
4 137
o
2.18
0.54
3;
4
4
10147 -
5 114
1
0.36
0.68
3:
4
5
10147 - 6 121
o
1.92
0.48
3:
4
11
Pooled
684
3
5.7
0.04
4
4
5 D.F.
Homogeneity
X2 for 63:1
0.9ns
5 D.F.
Homogeneity
X2 for 255:1 3.7ns
Cross ( 3)·
LH
SH
Ratio 1
BC(2)
63:1
10164 -
1 118
2
0.01
?
10164 -
2 123
2
0.00
?
10164 -
3 109
2
0.04
?
10165 - 1 128
o
2.03
?
10165 -
2 122
1
0.45
?
10165 -
3 122
1
0.45
?
Pooled
722
8
2.60
?
5 D.F.
Homogeneity
X2 for 63:1
0.38ns
----------------------------------------------------------
La = Longhead
SH = Shorthead
*: C~isquare (X2 ) significant at p = 0.05
_.......:<;.,n: at u = 0.01; ns = nonsignificant X2 •

Table A11: Chi-square tests for Headlength in 1987 (Cont.)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
'':":ross ( 4 )
LH
SH
Ratio 1
Ratio 2
N
F2
7:1
55:9
10148 -
1
67
9
0.03
0.31
2: 3
1
10148 -
2 114
9
3.02
4.68
2:
3
1
10148 -
3 114
4
9.0**
11.1**
?
5
10148 -
4
98
12
0.26
0.91
2:
3
2
10148 - 5 103
22
2.97
1.30
2: 3
2
10148 -
6 110
27
6.58*
3.61
3
3
Pooled
606
83
0.13
2.32
2:
3
2
5 D.F. Homogeneity
X2 for
7:1
21.6**
5 D.F. Homogeneity
x2 for 55:9
19.6**
Cross (4)
LH
SH
Ratio 1
Ratio 2
BC(2)
63:1
243:13
10168 -
1 114
2
0.02
2.71
?
LH = Longhead
SH = Shorthead
*: Chisquare (X2 ) significant at p = 0.05
**: X2 significant at p = 0.01: ns = nonsignificant X2 •

Table A11: Chi-square tests for Headlength in 1987(Cont.)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
x2
culation
Cross (6)
LH
SH
Ratio 1
Ratio 2
N
F2
63:1
243:13
10149 -
1 195
6
2.65
1.83
3:
4
4
10149 -
2 204
5
0.94
3.13
3:
4
2
10149
3 187
3
0.00
4.8*
3
5
10149 -
4 200
5
1.02
2.96
3;
4
4
10149 -
5 215
1
1.70
0.03
3: 4
5
10149 -
6 190
4
0.31
3.66
3: 4
4
Pooled
1191
24
1.35
24.3**
3
4
5 D.F.
Homogeneity
x2 for
63:1
5.3ns
5 D.F.
Homogeneity
x2 for 243:13 7.8ns
Cross (6)
LH
SH
Ratio 1
Ratio 2
BC(2)
7:1
55:9
10176 -
1
43
5
0.19
0.53
3
10176 -
2
92
20
2.94
1.33
3
10176 -
3
32
4
0.06
0.26
3
Pooled
167
29
0.95
0.09
3
2 D.F. Homogeneity
x2 for
7:1
2.24ns
2 D.F. Homogeneity
x2 for 55:9
2.03ns
----------------------------------------------------------
LH = Longhead
SH = Shorthead
*: Chisquare (X2 ) significant at p = 0.05
**: X2 significant at p = 0.01: ns = nonsignificant X2 •

Table All: Chi-square tests for Headlength in 1987 (Cont.)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
x2
culation
------------------------------------------ ---------------
Cross (7)
LH
SH
Ratio1 Ratio2
Ratio3
N
F2
15:1
63:1
243:13
10150 -
2 179
24
10.8** 139.0** 19.2**
?
6
10150 -
3 194
o
12.9**
3.08
10.4**
3
11
10150 - 4 185
10
0.42
16.1**
0.01
2; 4
6
10150 -
5 166
9
0.37
14.6**
0.02
2: 4
6
10150 -
6 160
1
8.7**
0.93
6.6*
3
9
Pooled
884
44
3.61
61.0**
0.22
2: 4
9
4 D.P. Homogeneity
x2 for 15:1
29.6**
4 D.P. Homogeneity
x2 for 63:1
112.7**
4 D.P. Homogeneity
x2 for 243:13
34.0**
cross (7)
LH
SH
Ratiol
Ratio2 Ratio3
BC(2)
3:1
7:1
55:9
10167 -
1 154
40
2.00
11.7**
6~9**
2i
3
10167 -
2 139
20
13.1**
0.01
0.29
3
10167 -
3 110
10
17.8**
1.90
3.26
3
10167 -
4 130
1
41.0**
16.5*8 19.2**
?
Pooled
533
71
56.5**
0.31
2.66
3
3 D.P. Homogeneity
x2 for 3:1
17.4**
3 D.P. Homogeneity
X2 for 7:1
29.8**
3 D.P. Homogeneity
x2 for
55:9 27.0**
La = Longhead
SH = Shorthead
*: Chisquare (X2 ) significant at p = 0.05
**: X2 significant at p = 0.01; ns = nonsignificant X2 •

Table All: Chi-square tests for Headlength in 1987 (Cont. )
tios
with non-
Nwnl:Ier of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
------------------------------------------ ---------------
Cross(8)
LH
SH
Ratio1
Ratio2 Ratio3
X2
N
F2
7:1
55:9
225:31
10152 - 1 146
18
0.35
1.29
0.20
2; 3; 4
2
10152 - 2
83
14
0.33
0.01
0.49
2; 3; 4
2
10152 - 3 105
17
0.23
0.00
0.3
2; 3; 4
2
10152 - 4
90
6
3.43
4.9*
3.10
2;
4
3
10152 - 5
99
16
0.21
0.00
0.35
2; 3; 4
2
10152 - 6 102
21
2.35
0.92
2.85
2; 3; 4
2
Pooled
625
92
0.07
0.90
0.35
2; 3; 4
2
5 D.F.
Homogeneity
X2 for 7:1
6.8ns
5 D.F.
Homogeneity
X2 for 55:9
6.2ns
5 D.F.-
Homogeneity
X2 for 225:31 7.2ns
Cross (8)
LH
SH
Ratio 1
Ratio 2
X2
BC(2)
7:1
55:9
10169 - 1
56
7
0.11
0.45
3
10169 - 2
54
7
0.06
0.34
3
Pooled
110
14
0.17
0.79
3
1 D.F. Homogeneity
X2 for 7:1
O.Ons
1 D.F. Homogeneity
X2 for 55:9
O.Ons
LH = Longhead
SH = Shorthead
*: Chisquare (X2 ) significant at p = 0.05
**: X2 significant at p = 0.01; ns = nonsignificant X2 •

Table All: Chi-square tests for Headlength in 1987 (Cont. )
tios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
------------------------------------------ ---------------
Cross (8)
LH
SH
Ratiol
Ratio2 Ratio3
x2
N
F2
7:1
55:9
225:31
10152 - 1 146
18
0.35
1.29
0.20
2: 3: 4
2
10152 - 2
83
14
0.33
0.01
0.49
2: 3: 4
2
10152 - 3 105
17
0.23
0.00
0.3
2: 3; 4
2
10152 - 4
90
6
3.43
4.9*
3.10
2:
4
3
10152 - 5
99
16
0.21
0.00
0.35
2; 3: 4
2
10152 - 6 102
21
2.35
0.92
2.85
2: 3: 4
2
Pooled
625
92
0.07
0.90
0.35
2: 3: 4
2
5 D.F.
Homogeneity
X2 for 7:1
6.8ns
5 D.F.
Homogeneity
X2 for 55:9
6.2ns
5 D.F •.
Homogeneity
x2 for 225:31 7.2ns
Cross (8)
LH
SH
Ratio 1
Ratio 2
X2
BC(2)
7:1
55:9
10169 - 1
56
7
0.11
0.45
3
10169 - 2
54
7
0.06
0.34
3
Pooled
110
14
0.17
0.79
3
1 D.F. Homogeneity
X2 for 7:1
O.Ons
1 D.F. Homogeneity
X2 for 55:9
O.Ons
LH = Longhead
SH = Shorthead
*: Chisquare (X2 ) significant at p = 0.05
**: x2 significant at p = 0.01: ns = nonsignificant X2 •

Table A11: Chi-square tests for Seed Size in 1987
Ratios
with non-
Number of genes
Nwnber
significant (p>O.OS)
Direct cal-
of Plants
Chisquare
Values
X2
culation
------------------------------------------ ---------------
Cross(3)
LS
MS
Ratio1 Ratio2
Ratio3
X2
N
F2
15:1
60:3
243:13
10147 - 1
93
4
0.75
0.09
0.18
2: 3: 4
2
10147 - 2
84
3
1.17
0.33
0.48
2: 3: 4
2
10147 - 3
91
4
0.67
0.06
0.15
2: 3; 4
1
10147 - 4 107
5
0.61
0.02
0.09
2; 3; 4
1
10147 - 5
94
1
4.4*
2.88
3.19
3: 4
4
10147 - 6
96
2
2.96
1.60
1.88
2; 3: 4
4
Pooled
565
19
9.0**
2.93
4.1*
3
3
5 D.F.
Homogeneity
X2 for 15:1
1.6ns
5 D.F.
Homogeneity
X2 for 60:3
2.1ns
5 D.F.
. Homogeneity
X2 for 243:13
1.9ns
------------------------------------------ ---------------
cross (4)
MS
LS
Ratio1
Ratio2
Ratio3
X2
N
F2
15:1
60:3
24~:13
10148 - 1
61
5
0.20
1.15
0.85
2; 3: 4
1
10148 - 2 105
16
10.0**
19.1**
16.7**
?
1
10148 - 3 108
3
2.38
1.04
1.30
2; 3; 4
2
10148 - 4 109
1
5.4*
3.60
4.0*
3
1
10148 - 5 124
0
8.3**
6.2*
6.6*
?
1

Table All: Chi-square tests for Seed Size in 1987 (Cont. )
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
------------------------------------------ ---------------
Cross (4)
MS
LS
Ratio1
Ratio2
Ratio3
X2
N
F2
15:1
60:3
243:13
10148 - 6 129
7
0.28
0.04
0.00
2: 3: 4
1
Pooled
636
32
2.43
0.00
0.12
2: 3: 4
1
5 D.F.
Homogeneity
x2 for 15:1 24.1**
5 D.F.
Homogeneity x2 for 60:3
31.1**
5 D.F.
Homogeneity X2 for 243:13 12.6*
Cross (4)
!as
MS
Ratio 1
Ratio 2
x2
BC(2)
2:1
11:5
10168 - 1
72
44
1.10
2.41
4
------------------------------------------ ---------------
Cross (8)
!as
MS
Ratio 1
Ratio 2
X2
N
F2
63:1
255:1
10152 - 1 161
2
0.12
2.90
3: 4
3
10152 - 2 104
0
1.65
0.41
3: 4
3
10152 - 3 119
3
0.64
13.4**
3
3
10152 - 4
95
1
0.17
1.05
3: 4
5
10152 - 5 112
1
0.34
0.71
3: 4
4
10152 - 6 122
0
1.94
0.48
3: 4
4
Pooled
713
7
1.63
6.3*
3
3
5 D.F.
Homogeneity
x2 for 63:1
3.2ns
5 D.F.
Homogeneity
x2 for 255:1
12.7*
------------------------------------------ ---------------
*: Chisquare (X2 ) significant at p = 0.05
**: x2 significant at p = 0.01: ns = nonsignificant X2 •

Table All: Chi-square tests for Seed Size in 1987 (Cont. )
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
------------------------------------------ ---------------
Cross(10)
LS
SS
Ratio 1
Ratio 2
X2
N
F2
63:1
255:1
10154 - 1 163
2
0.13
2.86
3; 4
3
10154 - 2 155
4
0.94
18.5**
3
2
10154 - 3 132
1
0.57
0.45
3; 4
4
10154 - 4 173
1
1.10
0.15
3; 4
2
10154 - 5 152
0
2.41
0.60
3; 4
4
10154 - 6 164
0
2.60
0.64
3; 4
5
Pooled
939
8
3.17
5.0*
3
3
5 D.F.
Homogeneity
X2 for
63 :1 4.6ns
5 D.F.
Homogeneity
X2 for 255:1 18.1**
Cross ("10) SS
LS
Ratio1 Ratio2
Ratio3
X2
BC(2)
1:1
3:1
5:3
10177 - 1
5
3
0.50
0.67
0.00
1; 2; 3
------------------------------------------ ---------------
Cross(9) Walor Togo
Ratio1 Ratio2
Ratio3
X2
N
F2
3:1
13:3
54:10
10153 - 1
84
11
8.9**
3.21
1.18
2; 3
1
10153 - 2
87
40
2.86
13.4**
24.3**
1
1
10153 - 3
90
24
0.45
0.40
2.55
1; 2; 3
1
10153 - 4
72
18
1.20
0.09
1.31
1; 2; 3
1
10153 - 5 123
18
11.3**
3.31
0.87
2; 3
1
Pooled
456
111
8.9**
0.25
6.7**
2
1
4
D.F. Homogeneity
X2
for 3:1
15.8**
4
D.F. Homogeneity
x 2
for 13:3 20.3**
4
D. __,
----...yeneity
v/~
.A
.... ...,A.-
54:10 23.5*""

Table All: Chi-square tests for Seed size in 1987
(Cont.)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
------------------------------------------ ---------------
Cross (11)
Togo
Walor
Ratio 1
Ratio 2
X2
N
F2
7:1
55:9
10155 - 1
73
9
0.17
0.65
2; 3
3
10155 - 2
94
9
1.33
2.42
2; 3
2
10155 - 3
118
18
0.07
0.08
2; 3
2
10155 - 4
107
1
13.2**
15.4**
?
5
10155 - 5
98
12
0.26
0.91
2; 3
2
10155 - 6
74
6
1.83
2.85
2; 3
2
Pooled
564
55
7.4**
13.7**
?
2
5 D.F.
Homogeneity
X2 for 7:1
9.5ns
5 D.F.
Homogeneity
X2 for
55:9
8.6ns
Cross (!1) Walor Togo Ratio1 Ratio2 Ratio3
X2
BC(2)
3:1
5:3
39:25
10171 -
1
39
37
22.7**
4.1*
2.96
?
10171 -
2
16
4
0.27
2.61
3.05
2;
3
Pooled
55
41
16.1**
1.11
0.54
3
1 D.F.
Homogeneity
X2
for 3:1
7.0**
1 D.F.
Homogeneity
X2 for 5:3
5.6*
1 D.F.
Homogeneity
X2 for 39:25 5.5*
*: Chisquare (X2 ) significant at p = 0.05
**: x 2 significant at p = O.Oli ns = nonsignificant x 2 •

Table All: Chi-square tests for Seed Size in 1987 (Cont.)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
x2
culation
Cross(12) Walor Togo Ratio1 Ratio2 Ratio3
N
F2
3:1
13:3
54:10
10156 -
1 101
20
4.6*
0.40
0.07
2:
3
1
10156 -
2
62
23
0.91
3.9*
8.4**
1
1
10156 -
3
38
15
0.31
3.17
6.5*
1: 2
1
10156 -
4
59
6
8.6**
3.9*
2.02
3
2
10156 -
5
86
11
9.7.*
3.50
1.35
2; 3
1
10156 -
6
97
14
9.1**
2.54
0.76
2:
3
1
Pooled
443
89
19.4**
1.43
0.50
2:
3
1
5 D.F. Homogeneity
x2 for 3:1
13.80*
5 D.F. Homogeneity
X2 for 13:3
15.90**
5 D.F. Homogeneity
X2 for 54:10 18.60**
Cross(14) Togo
Walor
Ratio 1
Ratio 2
N
F2
13:3
54:10
10157 -
1
99
24
0.05
1.41
2:
3
2
10157 -
2
87
30
3.65
8.9**
2
1
10157 -
3 113
18
2.16
0.353
2:
3
1
10157 -
4 111
12
6.5*
3.21
3
2
10157 -
5 103
13
4.3*
1.72
3
2
10157 -
6
96
35
5.5*
12.2**
?
2
Pooled
609
132
0.43
2.69
2: 3
1
5 O.F. Homogeneity
x2 for 13:3
21.8**
50.F. Homogeneity x2 for 54:10
25.1**

Table All: Chi-square tests for Seed Size in 1987 (Cont. )
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
------------------------------------------ ---------------
Cross
(14) Togo Walor Ratio1 Ratio2 Ratio3
X2
BC(2)
1:1
3:1
5:3
10172 - 1
3
3
0.00
2.00
0.40
1; 2; 3
------------------------------------------ ---------------
Cross(15)
LS
MS
Ratio1 Ratio2
Ratio3
x2
N
F2
15:1
225:31
243:13
10159 - 1
135
23
18.6**
0.89
29.5**
4
1
10159 - 2
157
8
0.55
8.2**
0.02
2; 4
2
10159 - 3
122
8
0.00
4.3*
0.31
4
2
10159 - 4
129
12
1.23
1.72
3.45
2; 4
2
10159 - 5
159
15
1.67
1.99
4.5*
2; 4
3
10159 - 6
138
12
0.78
2.38
2.66
2; 4
1
Pooled
840
78
7.9** 11.3**
22.3**
?
1
5 D.F.
Homogeneity
X2 for 15:1
15.0*
5 D.P.
Homogeneity
X2 for 225:31
8.2ns
5 D.P.
Homogeneity
X2 for 243:13 18.2**
------------------------------------------ ---------------
Cross(13)
LS
SS
Ratio 1
Ratio 2
X2
N
F2
7:1
15:1
10158 - 1
127
4
10.7**
2.28
2
2
10158 - 2
140
19
0.04
9.8**
2
1
10158 - 3
158
18
0.83
4.8*
2
1
10158 - 4
153
8
8.4**
0.45
2
1
10158 - 5
169
13
4.8*
0.25
2
1

Table All: Chi-square tests for Seed Size in 1987 (Cont. )
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
x2
culation
------------------------------------------ ---------------
Cross(13)
LS
SS
Ratio 1
Ratio 2
X2
N
F2
7:1
15:1
10158 - 6
112
20
0.B5
17.9**
2
1
Pooled
859
82
12.3**
9.8**
?
1
5 D.F.
Homogeneity
X2 for
7:1
13.2*
5 D.F.
Homogeneity
X2 for 15:1
25.6**
CrosS(13)
LS
SS
Ratio 1
Ratio 2
x2
BC(2)
3:1
7:1
10181 - 1
121
16
13.0**
0.08
3
10181 - 2
5
4
1.81
8.4**
2; 3
10181 - 3
128
22
8.6**
0.64
3
Pooled
254
42
18.5**
0.77
3
2 D.F. Homogeneity
X2 for 3:1
4.9ns
2 D.F. Homogeneity
x2 for
7:1
8~4*
------------------------------------------ ---------------
Cross (16) IS
SS
Ratiol
Ratio2
Ratio3
X2
N
F2
15:1
60:3
243:13
10160 - 1 156
8
0.53
0.00
0.01
2; 3; 4
1
10160 - 2 153
8
0.45
0.02
0.00
2; 3: 4
1
10160 - 3 147 10
0.00
0.90
0.54
2: 3: 4
1
10160 - 4 129 13
2.05
6.0*
4.9*
2
1
10160 - 5 164
9
0.32
0.07
0.01
2: 3; 4
1

Table All: Chi-square tests for Seed Size in 1987 (End)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
Cross (16) LS
SS
Ratiol
Ratio2
Ratio3
N
F2
15:1
60:3
243:13
10160 - 6 132
8
0.07
0.28
0.12
2;' 3;,
4
1
Pooled
881 56
0.12
3.05
1.57
2;'
3: 4
1
5 D.F.
Homogeneity
X2 for 15:1
3.3ns
5 D.F.
Homogeneity
X2 for 60:3
4.3ns
5 D.F.
Homogeneity
X2 for 243:13
4.0ns
LS = Large Seed ~
MS = Medium Seed:
SS = Small Seed .
*: Chisquare (X ) significant at p = 0.05
**: x 2 significant at p = 0.01: ns = nonsignificant X2 .

Table A12: Chi-square tests for Headlength in 1986
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants
Chisquare
Values
X2
culation
Cross(l)
SH
LH
Ratio 1
Ratio 2
N
F2
63:1
255:1
9804
79
o
1.25
0.31
3;
4
3
Cross(l)
SH
LH
Ratio 1
Ratio 2
BC(2)
63:1
255:1
9801
119
o
1.89
0.47
?
Cross(2)
SH
LH
Ratio 1
Ratio 2
N
F2
63:1
255:1
9805
78
o
1.24
3;
4
4
cross(2)
SH
LH
Ratio 1
Ratio 2
BC(2)
63:1
255:1
9802
79
o
1.25
0.31
?
Cross(3)
SH
LH
Ratio1 Ratio2 Ratio3
N
F2
15:1
63:1
255:1
9806
78
1
3.35
0.05
1.56
2;
3;
4
2
cross (3)
SH
LH
Ratio 1
Ratio ,2
BC(l)
63:1
255:1
9803
116
o
1.84
0.46
?
cross (10) Walor Togo Ratiol Ratio2 Ratio3
N
F2
5:3
11:5
39:25
9850
74
28
4.3*
0.69
5.8*
2
5
9851
50
33
0.18
2.80
0.02
2
3
9852
22
7
2.21
0.68
2.71
2
1
9853
33
25
0.78
3.79
0.40
2
4
pooled
179
93
1.27
1.09
2.71
2
3 D.F.
Homogeneity
x 2 for 5:3
6.2ns
6.9ns

Table A12: Chi-square tests for Headlength in 1986 (Cont. )
Ratios
with non-
Number of genes
Number
significant (p>0.05)
irect cal-
of Plants
Chisquare
Values
X2
culation
------------------------------------------ ---------------
Cross(9) Togo T23DBE Ratio1 Ratio2 Ratio3
X2
N
F2
3:1
11:5
49:15
9838
56
22
0.43
0.34
0.99
1: 2: 3
?
9839
47
19
0.51
0.19
1.1
1; 2: 3
1
9841
25
14
2.47
0.39
3.37
1: 2: 3
1
9842
55
18
0.01
1.48
0.06
1; 2: 3
2
Pooled
183
73
1.69
0.89
3.68
1: 2: 3
3 D.F. Homogeneity
X2 for 3:1
1.7ns
3 D.F. Homoqeneity
X2 for 11:5
1.5ns
3 D.F. Homogeneity
X2 for 49:15
1.8ns
cross (9) Togo
T23DBE
Ratio 4
X2
N
F2
45:19
838
56
22
0.08
3
?
9839
47
19
0.03
3
1
9841
25
14
0.72
3
1
9842
55
18
0.89
3
2
Pooled
183
73
0.17
3
3 D.F.
Homogeneity
X2 for 45:19
1.6ns

Table A12: Chi-square tests for Headlength in1986 (Cont. )
Ratios
with non-
Number of genes
significant (p>0.05)
Oirect cal-
of Plants
Chisquare
Values
X2
culation
----------------------------------------- ----------------
Cross (9) Togo T230BE Ratio1 Ratio2 Ratio3
X2
BC(2)
3:1
11:5
45:19
9843
54
24
1.39
0.01
0.04
2; 3; 4
9844
80
27
0.00
1.80
1.02
2; 3: 4
Pooled
134
51
0.65
1.17
0.40
2: 3: 4
1 O.F.
Homogeneity
x2 for 3:1
0.74ns
1 O.F. Homogeneity
X2 for 11:5
0.64ns
1 O.F. Homogeneity
X2 for
45:19
0.7ns
----------------------------------------- ----------------
Cross(13) LH
SH
Ratio1 Ratio2
Ratio3
x2
N
F2
7:1
55:9
225:31
9854
90
8
1.69
2.82
1.43
2; 3; 4
33
9855
83
8
1.14
2.10
0.94
2; 3; 4
49
9856
66
17
4.8*
2.83
5.5*
3
12
9857
84
13
0.07
0.04
0.15
2; 3; 4
8
9858
78
6
2.20
3.33
1.95
2: 3: 4
12
9859
72
9
0.14
0.58
0.08
2: 3: 4
24
9860
74
12
0.17
0.00
0.28
2; 3: 4
39
Pooled
547
73
0.30
2.69
0.07
2; 3; 4
6 O.F.
Homogeneity
X2 for
7:1
9.9ns
6 O.F. Homogeneity
X2 for
55:9
9.0ns
6 O.F. Homogeneity
X2 for
225:31 10.2ns

Table A12: Chi-square tests for Headlength in 1986 (End)
Ratios
with non-
Number of genes
Number
significant (p>0.05)
Direct cal-
of Plants Chisquare
Values
X2
culation
Cross(13)
LH
SH
Ratio 1
Ratio 2
BC(l)
3:1
13:3
9797
72
17
1.65
0.01
2;
3
9798
80
23
0.39
0.87
2;
3
9799
45
13
0.21
0.51
2;
3
Pooled
197
53
1.93
0.99
2 D.F. Homogeneity
X2 for 3:1
0.32ns
2 D.F. Homogeneity
X2 for 13:3
0.40ns
------------------------------------------ ---------------
cross (12) Walor
T23DBE
Ratio 1
Ratio 2
X2
N
F2
9:7
37:27
9889
49
31
0.80
0.39
2; 3
3
9893
60
57
1.17
2.05
2; 3
3
9894
52
44
0.17
0.52
2; 3
3
Pooled
161
132
0.10
0.99
2; 3
2 D.F. Homogeneit;t- X2 for 9:7
2.04ns
2 D.F. Homogeneity
X2
for 37:27
2.0ns
LH = Longhead;
SH = Shorthead.
*: Chisquare (X2 ) significant at p = 0.05
**: X2 significant at p = 0.01; ns = nonsignificant X2 •

Table A13A: Linkage study in 1987: Maturity/Headlength
Cross (1)
Early> Late
SH > LH
Linkage
Ratio
15:1
63:1
945:
15: 63: 1
Early
Early
Late
Late
Family
SH
LH
SH
IJI
Chisq.
D.F.
10145-1
164
1
10
1
4.827 ns
3
10145-2
133
6
15
o
1.518 ns
3
10145-3
146
5
15
o
0.990 ns
3
10145-4
189
5
1
o
0.108 ns
3
10145-5
156
12
17
2
6.062 ns
3
10145-6
139
5
4
o
0.398 ns
3
Pooled
927
34
62
3
0.491 ns
3
Homogeneity
13.411 ns
15
Cross (1)
Early> Late
SH > LH
Linkage
Ratio
7:1
63:1
441: 7: 63: 1
Early
Early
Late
Late
Family
LH
SH
LH
SH
Chisq.
D.F.
10145-1
164
1
10
1
2.870 ns
3
10145-2
133
6
15
o
1.804 ns
3
10145-3
146
5
15
o
1.026 ns
3
10145-4
189
5
1
o
0.206 ns
3
10145-5
156
12
17
2
0.322 ns
3
10145-6
139
5
4
o
0.638 ns
3
Pooled
927
34
62
3
0.235 ns
3
Homogeneity
6.630 ns
15
-----------------------------------------------------------
ns = non significant at p = 0.05.
SH = short head; LH = long head.

Table A13A: Linkage study in 1987:Maturity/Headlength
(Cont. )
Cross (3)
Early> Late
LH > SH
Linkage
Ratio
63:1
63:1
3969: 63: 63: 1
---------------------------------------- -----------------
Early
Early
Late
Late
Family
LH
SH
LH
SH
Chisq.
D.F.
---------------------------------------- -----------------
10147-1
96
1
10
o
0.839 ns
3
10147-2
106
1
1
o
0.001 ns
3
10147-3
94
o
5
o
0.124 ns
3
10147-4
137
o
o
o
0.035 ns
3
10147-5
114
1
o
o
0.006 ns
3
10147-6
120
o
1
o
0.007 ns
3
Pooled
667
3
17
o
0.129 ns
3
Homogeneity
0.882 ns
15
Cross (4)
Late> Early
LH > SH
Linkage
Ratio
255:1
7:1
1785: 255: 7: 1
---------------------------------------- -----------------
Late
Late
Early
Early
Family
LH
SH
LH
SH
Chisq.
D.F.
---------------------------------------- -----------------
10148-1
67
9
o
o
0.000 ns
3
10148-2
114
9
o
o
0.012 ns
3
10148-3
113
4
1
o
0.137 ns
3
10148-4
98
12
o
o
0.001 ns
3
10148-5
101
22
2
o
1.421 ns
3
10148-6
110
26
o
1
11.999 **
3
Pooled
603
82
3
1
0.895 ns
3
Homogeneity
12.675 ns
15
ns = non significant at p = 0.05.
SH = short head: LH = long head.

Table A13A: Linkage study in 1987: Maturity/Headlength
(Cont. )
Cross (4)
Late> Early
rn > SH
Linkage
Ratio
255:1
55:9
14025:2295:55:9
Late
Late
Early
Early
Family
rn
SH
rn
sa
Chisq.
D.F.
10148-1
67
9
o
o
0.001 ns
3
10148-2
114
9
o
o
0.018 ns
3
10148-3
113
4
1
o
0.151 ns
3
10148-4
98
12
o
o
0.004 ns
3
10148-5
101
22
2
o
1.516 ns
3
10148-6
110
26
o
1
10.672 *
3
Pooled
603
82
3
1
0.746 ns
3
Homogeneity
11.615 ns
15
Cross (7)
Late > Early
LH > sa
Linkage
Ratio
13:3
15:1
195: 13: 45:
3
Late
Late
Early
Early
Family
rn
SH
rn
SH
Chisq.
D.F.
10150-1 159
21
20
3
0.172 ns
3
10150-2 146
o
45
o
0.193 ns
3
10150-3 151
7
34
3
0.692 ns
3
10150-4 138
8
28
1
0.129 ns
3
10150-5 118
o
42
1
0.000 ns
3
Pooled
712
36
169
8
0.027 ns
3
Homogeneity
1.160 ns
12
----------------------------------------------------------
ns = non significant at p = 0.05.
SH = short head; LH = long head.

Table A13A: Linkage study in 1987: Maturity/Head1ength
(Cont. )
Cross (7)
Late > Early
LH > SH
Linkage
Ratio
3:1
15:1
45: 3: 15: 1
Late
Late
Early
Early
Family
LH
5H
LH
SH
Chisq.
D.F.
10150-1 159
21
20
3
0.718 ns
3
10150-2 146
o
45
o
0.014 ns
3
10150-3 151
7
34
3
0.711 ns
3
10150-4 138
8
28
1
0.056 ns
3
10150-5 118
o
42
1
0.189 ns
3
Pooled
712
36
169
8
0.015 ns
3
Homogeneity
1.673 ns
12
Cross (15)
Early > Late
SH > UI
Linkage
Ratio
7:1
63:1
441: 7: 63: 1
Early
Early
Late
Late
Family
LH
SH
LH
SH
Chisq.
D.F.
10159-1
146
o
19
o
0.002 ns
3
10159-2
145
o
23
o
0.003 ns
3
10159-3
127
o
11
o
0.041 ns
3
10159-4
123
o
21
o
0.009 ns
3
10159-5
174
o
2
o
0.330 ns
3
10159-6
139
o
11
o
0.058 ns
3
Pooled
854
o
87
o
0.145 ns
3
Homogeneity
0.299 ns
15
----------------------------------------------------------
ns = non significant at p = 0.05.
5H = short head; LH = long head.

Table A13A: Linkage study in 1987: Maturity/Headlength
(End. )
Cross
(15)
Early> Late
SH > LH
Linkage
Ratio
225:31
63:1
14175:225:1953:31
Early
Early
Late
Late
Family
LH
SH
IJI
SH
Chisq.
D.F.
-------------------------------------- -------------------
10159-1
146
0
19
0
0.001 ns
3
10159-2
145
0
23
0
0.006 ns
3
10159-3
127
0
11
0
0.03,5 ns
3
10159-4
123
0
21
0
0.013 ns
3
10159-5
174
0
2
0
0.316 ns
3
10159-6
139
0
11
0
0.051 ns
3
Pooled
854
0
87
0
0.115 ns
3
Homogeneity
0.307 ns
15
--------------------------------------------------------
Table D11B: Linkage study in 1987: Maturity/Seed size
Cross
(3)
Early> Late
LS>MS
Linkage
Ratio
63:1
60:3
3780:189:60:3
Early
Early
Late
Late
Family
LS
MS
LS
MS
Chisq.
D.F.
-------------------------------------- -------------------
10147-1
86
1
7
3
94.862 ** 3
10147-2
84
3
0
0
0.005 ns
3
10147-3
86
4
5
0
0.798 ns
3
10147-4
107
5
0
0
0.000 ns
3
10147-5
94
1
0
0
0.046 ns
3
10147-6
95
2
1
0
0.001 ns
3
Pooled
552
16
13
3
13.855 ** 3
Homogeneity
81. 856 ** 15
----------------------------------------------------------
SH = short head; LH = long head.
ns = non significant at p = 0.05.

Table A13B: Linkage study in 1987: Maturity/Seed size
(Cont. )
Cross (3)
Early > Late
LS>MS
Linkage
Ratio
63:1
243:13
15309:819:243:13
Early
Early
Late
Late
Family
LS
MS
LS
MS
Chisq.
D.F.
10147-1
86
1
7
3
87.371 **
3
10147-2
84
3
o
o
0.008 ns
3
10147-3
86
4
5
o
0.825 ns
3
10147-4
107
5
o
o
0.001 ns
3
10147-5
94
1
o
o
0.051 ns
3
10147-6
95
2
1
o
0.000 ns
3
Pooled
552
16
13
3
12.798 **
3
Homogeneity
75.457 ** 15
Cross (3)
Early> Late
LH > MS
Linkage
Ratio
63:1
15:1
945: 63: 15: 1
Early
Early
Late
Late
Family
LS
MS
LS
MS
Chisq.
D.F.
-------------------------------------~
10147-1
86
1
7
3
66.287 **
3
10147-2
84
3
o
o
0.019 ns
3
10147-3
86
4
5
o
0.930 ns
3
10147-4
107
5
o
o
0.010 ns
3
10147-5
94
1
o
o
0.070 ns
3
10147-6
95
2
1
o
0.000 ns
3
Pooled
552
16
13
3
9.820 *
3
Homogeneity
57.495 ** 15
----------------------------------------------------------
LS = large seed : MS = medium seed
ns = non significant at p = 0.05.

Table A13B: Linkage study in 1987: Maturity/Seed size
(Cont. )
Cross (4)
Late> Early
MS>LS
Linkage
Ratio
255:1
60:3
15300:7155:60:3
Late
Late
Early
Early
Family
MS
LS
MS
LS
Chisq.
D.F.
-------------------------------------- -------------------
10148-1
61
5
0
0
0.005 ns
3
10148-2
105
16
0
0
0.075 ns
3
10148-3
108
3
1
0
0.075 ns
3
10148-4
109
1
0
0
0.014 ns
3
10148-5
122
0
2
0
0.238 ns
3
10148-6
128
7
1
0
0.103 ns
3
Pooled
633
32
4
0
0.309 ns
3
Homogeneity
0.200 ns
15
-------------------------------------- -------------------
Cross
(4)
Late > Early
MS > LS
Linkage
Ratio
255:1
15:1
3825:255:15:1
-------------------------------------- -------------------
Late
Late
Early
Early
Family
MS
LS
MS
I.S
Chisq.
D.F.
10148-1
61
5
o
o
0.001 ns
3
10148-2
105
16
o
o
0.039 ns
3
10148-3
108
3
1
o
0.086 ns
3
10148-4
109
1
o
o
0.021 ns
3
10148-5
122
o
2
o
0.317 ns
3
10148-6
128
7
1
o
0.103 ns
3
Pooled
633
32
4
o
0.294 ns
3
Homogeneity
0.274 ns
15
----------------------------------------------------------
I.S =
large seed : MS = medium seed.
ns = non significant at p = 0.05.

Table A13B: Linkage study in 1987: Maturity/Seed size
(End)
Cross (4)
Late> Early
MS > LS
Linkage
Ratio
255:1
243:13
61965:3315:243:13
-------------------------------------- -------------------
Late
Late
Early
Early
Family
MS
LS
MS
LS
Chisq.
D.F.
-------------------------------------- -------------------
10148-1
61
5
0
0
0.003 ns
3
10148-2
105
16
0
0
0.065 ns
3
10148-3
108
3
1
0
0.077 ns
3
10148-4
109
1
0
0
0.016 ns
3
10148-5
122
0
2
0
0.255 ns
3
10148-6
128
7
1
0
0.103 ns
3
Pooled
633
32
4
0
0.304 ns
3
Homogeneity
0.214 ns
15
----------------------------------------------------------
LS = large seed: MS = medium seed .
ns = non significant at p = 0.05.
LH =·long head; SH = short head.

Table A13C: Linkage study in 1987: HeadlengthjSeed size
Cross
(3)
LH > SH
LS>MS
Linkage
Ratio
63:1
15:1
945:
63: 15: 1
LH
LH
SH
SH
Family
LS
MS
LS
MS
chisq.
D.F.
-------------------------------------- -------------------
10147-1
92
4
1
0
0.010 ns
3
10147-2
83
3
1
0
0.008 ns
3
10147-3
91
4
0
0
0.011 ns
3
10147-4
107
5
0
0
0.010 ns
3
10147-5
93
1
1
0
0.003 ns
3
10147-6
96
2
0
0
0.047 ns
3
Pooled
562
19
3
0
0.014 ns
3
Homogeneity
0.074 ns
15
-------------------------------------- -------------------
Cross (3)
LH > SH
LS > MS
Linkage
Ratio
63:1
60:3
3780: 189: 60: 3
-------------------------------------- -------------------
LH
LH
SH
SH
Family
LS
MS
LS
MS
Chisq.
D.F.
-------------------------------------- ----------------~--
10147-1
92
4
1
0
0.021 ns
3
10147-2
83
3
1
0
0.015 ns
3
10147-3
91
4
0
0
0.001 ns
3
10147-4
107
5
0
0
0.000 ns
3
10147-5
93
1
1
0
0.001 ns
3
10147-6
96
2
0
0
0.025 ns
3
Pooled
562
19
3
0
0.000 ns
3
Homogeneity
0.063 ns
15
---------------------------------------------------------
MS = medium seed: IS = large seed:
ns = non significant at p = 0.05.
UI = long head: SH = short head.

Table A13C:
Linkage study in 1987: HeadlengthjSeed size
(Cont. )
Cross
(3)
LH > SH
LS>MS
Linkage
Ratio
63:1
243:13
15309:819:243:13
LH
LH
SH
SH
Family
LS
MS
LS
MS
Chisq.
D.F.
-------------------------------------- -------------------
10147-1
92
4
1
0
0.018 ns
3
10147-2
83
3
1
0
0.013 ns
3
10147-3
91
4
0
0
0.002 ns
3
10147-4
107
5
0
0
0.001 ns
3
10147-5
93
1
1
0
0.001 ns
3
10147-6
96
2
0
0
0.030 ns
3
Pooled
562
19
3
0
0.000 ns
3
Homogeneity
0.065 ns
15
-------------------------------------- -------------------
Cross
(4)
LH > SH
MS >
LS
Linkage
Ratio
7:1
60:3
420: 21: 60: 3
-------------------------------------- -------------------
LH
LH
SH
SH
Family
MS
LS
MS
LS
Chisq.
D.F.
-------------------------------------- ------------------
10148-1
58
4
3
1
1.018 ns
3
10148-2
98
15
7
1
0.727 ns
3
10148-3
101
3
3
0
0.027 ns
3
10148-4
97
1
12
0
0.003 ns
3
10148-5
103
0
21
0
0.112 ns
3
10148-6
104
6
25
1
0.137 ns
3
Pooled
561
29
71
3
0.099 ns
3
Homogeneity
1.925 ns
15
--------------------------------------------------------
MS = medium seed; LS = large seed;
ns = non significant at p = 0.05.
LH = long head; SH = short head.

Table AI3C: Linkage study in 1987: Headlength/Seed size
(Cont. )
Cross (4)
LH > SH
MS
>
LS
Linkage
Ratio
7:1
15:1
105: 7: 15: 1
LH
LH
SH
SH
Family
MS
LS
MS
LS
Chisq.
D.F.
--------------------------------------- ------------------
10148-1
58
4
3
1
0.970 ns
3
10148-2
98
15
7
1
0.397 ns
3
10148-3
101
3
3
0
0.109 ns
3
10148-4
97
1
12
0
0.000 ns
3
10148-5
103
0
21
0
0.149 ns
3
10148-6
104
6
25
1
0.220 ns
3
Pooled
561
29
71
3
0.045 ns
3
Homogeneity
1.800 ns
15
--------------------------------------- -------------------
Cross (4)
LH > SH
MS >
LS
Linkage
Ratio
7:1
243:13
1701 91: 243: 13
--------------------------------------- -------------------
LH
ill
SH
SH
Family
MS
LS
MS
LS
Chisq.
D.F.
------------------------------------~---------------------
10148-1
58
4
3
1
1.003 ns
3
10148-2
98
15
7
1
0.638 ns
3
10148-3
101
3
3
0
0.041 ns
3
10148-4
97
1
12
0
0.002 ns
3
10148-5
103
0
21
0
0.119 ns
3
10148-6
104
6
25
1
0.154 ns
3
Pooled
561
29
71
3
0.084 ns
3
Homogeneity
1.874 ns
15
----------------------------------------------------------
LS = large seed; MS = medium seed;
ns = non significant at p = 0.05.
LH = long head; SH = short head.

Table A13C: Linkage study in 1987: Headlength/Seed size
(Cont. )
Cross (4)
LH > SH
MS > LS
Linkage
Ratio
55:9
60:3
3300:165:540:27
---------------------------------------- -----------------
LH
LH
SH
SH
Family
MS
LS
MS
LS
Chisq.
D.F.
---------------------------------------- -----------------
10148-1
58
4
3
1
0.831 ns
3
10148-2
98
15
7
1
1.016 ns
3
10148-3
101
3
3
o
0.039 ns
3
10148-4
97
1
12
o
0.001 ns
3
10148-5
103
o
21
o
0.042 ns
3
10148-6
104
6
25
1
0.130 ns
3
Pooled
561
29
71
3
0.092 ns
3
Homogeneity
1. 968 ns
15
Cross
(4)
LH > SH
MS
>
LS
Linkage
Ratio
55:9
15:1
825: 55: 135: 9
LH
LH
SH
SH
Family
MS
LS
MS
LS.
Chisq.
D.F.
10148-1
58
4
3
1
0.841 ns
3
10148-2
98
15
7
1
0.550 ns
3
10148-3
101
3
3
o
0.145 ns
3
10148-4
97
1
12
o
0.007 ns
3
10148-5
103
o
21
o
0.056 ns
3
10148-6
104
6
25
1
0.178 ns
3
Pooled
561
29
71
3
0.018 ns
3
Homogeneity
'1.760 ns
15
LS = large seed:
MS = medium seed:
ns = non significant at p = 0.05.
LH = long head: SH = short head.

Table A13C: Linkage study in 1987: Headlength/Seed size
(Cont. )
Cross (4)
LH > SH
MS>LS
Linkage
Ratio
55:9
243:13
13365:715:2187:117
LH
LH
SH
SH
Family
MS
LS
MS
LS
Chisq.
D.F.
10148-1
58
4
3
1
0.830 ns
3
10148-2
98
15
7
1
1.890 ns
3
10148-3
101
3
3
o
0.058 ns
3
10148-4
97
1
12
o
0.002 ns
3
10148-5
103
o
21
o
0.045 ns
3
10148-6
104
6
25
1
0.140 ns
3
Pooled
561
29
71
3
0.069 ns
3
Homogeneity
1.897 ns
15
Cross (8)
LH > SH
LS>MS
Linkage
Ratio
7:1
63:1
441: 7: 63: 1
LH
UI
SH
SH
Family
LS
MS
LS
MS
Chisq.
D.F.
10152-1
143
2
18
o
0.165 ns
3
10152-2
81
o
13
o
0.002 ns
3
10152-3
102
3
17
o
0.789 ns
3
10152-4
89
1
6
o
0.006 ns
3
10152-5
97
1
15
o
0.101 ns
3
10152-6
102
o
20
o
0.027 ns
3
Pooled
614
7
89
o
0.647 ns
3
Homogeneity
0.444 ns
15
--------------------------------------------------------
LS = large seed: MS = medium seed ;
ns = non significant at p =0.05.
LH = long head; SH = short head.

Table A13C: Linkage study in 1987: Headlength/Seed size
(Cont. )
Cross (8)
LH > SH
LS>MS
Linkage
Ratio
7:1
255:1
1785: 7: 255:
1
LH
LH
SH
SH
Family
LS
MS
LS
MS
Chisq.
D.F.
10152-1
143
2
18
o
0.835 ns
3
10152-2
81
o
13
o
0.001 ns
3
10152-3
102
3
17
o
2.808 ns
3
10152-4
89
1
6
o
0.252 ns
J
10152-5
97
1
15
o
0.343 ns
3
10152-6
102
o
20
o
0.007 ns
3
Pooled
614
7
89
o
2.539 ns
3
Homogeneity
1.707 ns
15
\\
cro~s
(8)
LH > SH
LS>MS
Linkage
Ratio
55:9
63:1
3465: 55: 567: 9
LH
LH
SH
SH
Family
LS
MS
LS
MS
Chisq.
D.F.
--------------------------------------~-
10152-1
143
2
18
o
0.138 ns
3
10152-2
81
o
13
o
0.000 ns
3
10152-3
102
3
17
o
0.776 ns
3
10152-4
89
1
6
o
0.003 ns
3
10152-5
97
1
15
o
0.076 ns
3
10152-6
102
o
20
o
0.009 ns
3
Pooled
614
7
89
o
0.503 ns
3
Homogeneity
0.499 ns
15
---------------------------------------------------------
LS = large seed ; MS = medium. seed ;
ns = non significant at p = 0.05.
LH = long head; SH = short head.

Table A13C: Linkage study in 1987: Headlength/Seed size
(End)
Cross (8)
LH > SH
LS>MS
Linkage
Ratio
55:9
255:1
14025:55:2295:9
--------------------------------------- ------------------
LH
LH
SH
SH
Family
LS
MS
LS
MS
Chisq.
D.F.
-------------------------~------------------------------
10152-1
143
2
18
0
0.896 ns
3
10152-2
81
0
13
0
0.000 ns
3
10152-3
102
3
17
0
3.093 ns
3
10152-4
89
1
6
0
0.275 ns
3
10152-5
97
1
15
0
0.354 ns
3
10152-6
102
0
20
0
0.002 ns
3
Pooled
614
7
89
0
2.558 ns
3
Homogeneity
1.962 ns
15
---------------------------------------------------------
.
LS = large seed: MS = medium seed I
ns = non significant at p = 0.05.
LH = long head: SH = short head.

Table A14:
Summary of the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
M A
T
U -R
I
T
Y
I N
1 9 8
7
Cross ( 1 ) Late Gero * Early T23DBE
Family
Minimum gene number
Maximum -gene number
10145 -
1
2
2
10145 -
2
2
3
i0145 -
3
2
3
10145 -
4
1 ?
?
10145 -
5
2
3
10145
6
2
2
Pooled
2
2
Cross(3) Late Gero * Early Walor
Family
Minimum gene number
Maximum gene number
10147 -
1
3 ?
?
10147 -
2
3 ?
8
?
10147 -
3
3 ?
6
10147 -
4
3 ?
?
10147 -
5
3 ?
?
10147 -
6
3 ?
?
Pooled
3 ?
8 ?

Table A14:
Summary of the" minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
M A
T
U
R
I
T
Y
I N
1
9
8
7
(Cont.)
Cross(4) Late Gero * Early Walor
Family
Minimum gene number
Maximum gene number
10148
1
3 ?
7 ?
10148 -
2
3 ?
7 ?
10148"- 3
3 ?
?
10148 -
4
3 ?
5 ?
10148 -
5
3 ?
?
10148 -
6
3 ?
9 ?
Pooled
3" ?
?
----------------------------------------------------------
"Cross(7) Early T18BE * Late T23B
"Family
Minimum gene number
Maximum gene number
10150 -
2
1 ?
3
10150
3
1
2
10150 -
4
1
3
10150- 5
L ?
3
10150 -
6
1
1
Pooled
1 ?
2

Table A14:
Summary of the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
M A
T
U
R
I
T
Y
I N
1
9
8
7
(End)
Cross(15) Early· Togo * Late Gero
Family
Minimum gene number
Maximum gene number
10159 -
1.
2 ?
7-
10159 -
2
2 7
?
10159 -
3
2 7
7 ?
10159 -
4
2 ?
4
10159 -
5
?
?
10159 -
6
2 7
7
Pooled
7
6
?

Table A14:
Summary of the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
H
E
A
D
L
E
N
G
T
H
Cross(l) IN 1987
Longhead Gero * Short head T23DBE
Family
Minimum gene number
Maximum gene number
10145 -
1
3 ?
4
10145 -
2
4 ?
7 ?
10145 -
3
3 ?
6 ?
10145
4
3 ?
5 ?
10145 -
5
3 ?
4 ?
10145 -
6
3 ?
?
Pooled
5 ?
?
Cross(l)
in 1986
Longhead Gero * Short head T23DBE
Family
Minimum gene number
Maximum gene number
9804
3
4
Cross(2)
in 1986
Longhead Gero * Short head T23DBE
Family
Minimum gene number
Maximum gene number
9805
·3 ?
4
Cross(3)
in 1986
Longhead Gero * Short head T23DBE
Family
Minimum gene number
Maximum gene number
9806
2
4
Cross(2)
in 1987
Longhead Gero * Short he.ad T23B
Family
Minimum gene number
Maximum .gene number
10146 -
1
3 ?
5 ?
10146 -
3
3 ?
?
10146 -
4
4 ?
?
10146 -
5
3 ?
?
Pooled
?
5 ?

Table A14:
Summary of the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
H
E
A
D
L
E
N
G
T
H
(Cont. )
Cross(3) in 1987
Longhead Gero * Short head Walor
Family
Minimum gene number
Maximum gene number
10147 - 1
2 ?
4
10147 -
2
3 ?
4
10147 -
3
3 ?
9 ?
10147 -
4
3 ?
4
10147 -
5
3 ?
5 ?
10147 -
6
3 ?
?
Pooled
4
4
Cross(4)
in 1987
Longhead Gero * Short head Walor
Family
Minimum gene number
Maximum gene number
10148 -
1
1 ?
3
10148 -
2
1 ?
3
10148 -
3
?
5 ?
10148 - 4
2
3
10148 -
5
2
3
10148 -
6
3
3
Pooled
2
3
"t

Table A14:
Summary of the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
H
E
A
D
L
E
N
G
T
H
(Cont. )
----------------------------------------------------------
'Cross (6 ) in 1987
Longhead T18BE * Short head T23DBE
Family
Minimum gene number
Maximum gene number
10149 -
1
3 ?
4
10149 -
2
2 7
4
10149 -
3
3 ·7
5 ?
10149 -
4
3 ?
4
10149 -
5
3 ?
5 7
10149 -
6
3 ?
4
Pooled
3 7
4 7
Cross(7) in 1987'
Longhead T18BE * Short head T23B
Family
Minimum gene number
Maximum gene number
10150- 2
7
6 7
10150 -
3
3 ?
7
10150 -
4
2 7
6 7
10150 -
5
2 7
6 7
10150 -
6
3 7
9 7
Pooled
2 7
9 7
Cross( 8) . in 1987
Longhead T18BE * Short head Walor
Family
Minimum gene number
Maximum g.ene number
10152 -
1
2
3
10152 -
2
2
3
10152 -
3
2
3
10152 -
4
2 7
3
10152 -
5
2
3
10152 -
6
2
3
Pooled
2
3

Table A14:
Summary of the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
H
E
A
D
L
E
N
G
T
H
(Cont. )
Cross(15)
in 1987
Shorthead Togo * Longhead Ge:r:o
Family
Minimum gene number
Maximum gene number
10159 - 1
3 ?
?
10159 -
2
3 ?
9 ?
10159 -
3
3 7
8 ?
"'
10159 -
4
3 7
?
10159 -
5
3 7
?
1015"9 - 6
3 ?
?
Pooled
4 ?
?
Cross(13) in 1986
Shorthead Togo * Longhead Gero
Family
Minimum gene number
Maximum gene number
9854
2 ?
?
9855
2 ?
?
9856
3 ?
?
9857
2 ?
8 ?
9858
2 ?
?
9859
2 7
?
9860
2 ?
7
Pooled
2 7"
7
Cross(10)
in 1986
Shorthead Walor * Shorthead Togo
Family
Minimum gene number
Maximum gene number
9850
2 7
5
9851
2 ?
3
9852
1 7
2
9853
2 7
4
pooled
2 7
?

Table A14:
Summary of the minmum number of genes per cross
==========================================================.
HE
AD
L
E
N
G
T
H
(End)
Cross(9) in 1986
Shorthead Togo * Longhead- Gero
Family
Minimum gene number
Maximum gene number
9838
1 ?
?
9839
1
3
9841
1
3
9842
1 ?
3
Pooled
1 ?
?
Cross(12) in 1986
Shorthead Togo * Longhead Gero
Family
Minimum gene number
Maximum gene number
9889
2 ?
3
9893
2 ?
3
9894
2 ?
3
Pooled
2 ?
3 ?

TableA14~ Summary .of the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
S E E
b
S
I
Z
E
I N
1 9 8
7
Cross(3)
Medium seed Gero * Large seed Walor
Family
Minimum
gene
number
Maximum gene number
10147 - 1
2
4
10147 -
2
2
4
10147 -. 3
1 ?
4
10147 -
4
1 ?
4
10147 -
5
3 ?
4
10147 -
6
2 ?
4
Pooled
3
3
----------------------------------------------------------
Cross(4)
Medium seed Gero * Large seed Walor
Family
Minimum
gene
number
Maximum gene number
10148 -
1
1 ?
4
10148 -
2
1 ?
?
10148 -
3
2
4
10148 -
4
1 ?
3
10148 -
5
1 ?
?
10148 -
6
1 ?
4
Pooled
1 ?
4
--------------------------------------------~---~---------

Table A14:
Summary of the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
S E E
D
S
I
Z
E
I N
1
9
8
7 (Cont.)
Cross(8)
Medium seed T18BE * Large seed Walor
Family
Minimum
gene
number
Maximum gene number
10152 - 1
3
4
10152 -
2
3
4
10152 -
3
3
3
10152 -
4
3 ?
5
10152 -
5
3 ?
4
10152 -
6
3 ?
4
Pooled
3
3
fross (10)
Large seed Walor * Small- seed T23DBE
amily
Minimum
gene
number
Maximum gene number
10154 -
1
3
4
10154 -
2
2 ?
3
10154 -
3
3 ?
4
10154 -
4
2 ?
4
10154 -
5
3 ?
4
10154 -
6
3 ?
5
Pooled
3
3
Cross(9r
Large seed Togo
* Large seed Walor
Family
Minimum
gene
number
Maximum gene number
10153 -
1
1 ?
3
10153 -
2
1
1
10153 -
3
1
3
10153 - 4
1
3
10153 -
5
1 ?
3
Pooled
1 ?
2

Table A14:
Summary of the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
S . E
E
D
S
I
Z
E
I N
1
9
8
7 (Cont.)
Cross (11)
Large seed Togo
* Large seed Walor
Family
Minimum
gene
number
Maximum gene.' number
10155 -
1
2 ?
3
10155 -
2
2
3
10155 -
3
2
3
10155 -
4
2
5 ?
10155 -
5
2
3
10155 -
6
2
3
Pooled
?
2 ?
Cross(12)
Large seed Togo
* Large seed Walor
Family
Minimum
gene
number
Maximum
gene number
10156 -
1
1 ?
3
10156 -
2
1
1
10156 -
3
1
2
10156 -
4
2 ?
3
10156 -
5
1 ?
3
10156 -
6
1 ?
3
Pooled
1 ?
3

Table 'A14:
Summary of :the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
S E E
D
S
I
Z
E
I N
1
9
8
7 (Cont.)
Cross(14)
Large seed Toga
* Large seed Walor
Family
Minimum
gene
number
Maximum gene number
10157 - 1
2
3
10157 -
2
1 ?
2
10157 -
3
1 ?
3
10157
4
2 ?
3
10157 -
5
2 ?
3
10157
6
2 ?
?
..
Pooled
1 ?
3
Cross(15)
Large seed Toga
* Medium seed Gero
Family
.
.Minimum
gene
number
Maximum gene number
10159 -
1
1 ?
4
10159 -
2
2
4
10159
3
2 ?
4
10159 -
4
2
4
10159 -
5
2 ?
4
10159 -
6
1 ?
4
Pooled
1 ?
?

Table A14:
Summary of the minmum number of genes per cross
----------------------------------------------------------
----------------------------------------------------------
S E E
D
S
I
Z
E
I N
1
9
8
7 (End)
Cross(13)
Large seed Toga
* Small seed T23DBE
Family
Minimum
gene
number
Maximum gene number
10158 -
1
2 ?
3
10158
2
1 ?
2
10158 -
3
1 ?
2
10158 -
4
1 ?
2
10158 -
5
1 ?
2
10158 -
6
1 ?
2
Pooled
1 ?
?
--------"--------------------------------------------------
Cross(16)
Large· seed Toga
* Small seed T23DBE
Family
Minimum
gene
number
Maximum gene number
10160 -
1
1 ?
4
10160 -
2
1 ?
4
10160 -
3
1 ?
4
10160 -
4
1 ?
2
10160 -
5
1 ?
4
10160 -
6
1 ?
4
Pooled
1 ?
4

RESUME EN FRANCAIS DE LA THEBE
AYANT POUR TITRE :
FACTORS INFLUENCING GRAIN YIELD IN PEARL
MILLET PENNISETUM
glaucum (L.) R.
Br.
by
ABALO WIDI TCHALA
B.S. Université du Bénin Lomé Togo, 1974
M.S. Université de Paris Sud,
Orsay France, 1977
A Dissertation Submitted ta the Graduate Faculty
of the University of Georgia in Partial Fulfillment
of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
ATHENS, GEORGIA
1989

Facteurs
influençant
le
rendement
en
grains
du
mil,
Pennisetum
glaucum (L.) R.
Br.
Par Widi TCHALA /
Sous la direction de Wayne W.
HANNA1
RESUME
Pour
avoir
suffisamment
d'aliments
de
bonne
qualité
pour
la
population humaine
galopante,
il
est nécessaire
d'augmenter
les
rendements d'une plante hautement digestiblie et nourr issante comme
le mil, Pennesetum glaucum (L.) R.
Br.
Entre 1985
et 1987,
deux études
parallèles ont
été memées
à la
station exprérimentale de Tif ton,
Georgia aux USA
(Coastal Plain
Exper iment
Station,
Tif ton,
Georgia,
USA),
l'une
concernant les
méthodes
de
vulgarisation
et
l'autre
traitant
de
l'aspect
amélioration
génétique,
en
vue
d'identifier
les
facteurs
influençant le rendement en grains du mil et ses composants.
LE VOLET AMENAGEMENT/GENETIQUE DES PLANTES
L'objectif
scientifique du volet qui
a
trait à
la vulgarisation
était de déterminer les effets agronomiques de la date du semis,
de
la
densité,
du
nanisme,
de
la
précocité
et
des
maladies
foliaires
(la
pyriculariose causée
par Pyricularia
grisea
(Cke)
Sale., et
la rouille
causée par Puccinia substriata var
indica
)
sur les caractéristiques des plantes.
Pour cela, quatre lignées proches-isogéniques (différant seulement
au niveau de quelques loci) ont été cultivées pendant deux années
consécutives (1985 et 1986), en split plot avec deux facteurs,
la
densité à deux niveaux et
la variété
représentée par
les quatre
lignées. Les deux niveaux de densité (la haute densité avec 444 000
plants
à
l ' hectare,
et
la
faible
densité
avec
66
000
plants
à
l'hectare)
occupaient
chacune
une
parcelle
principale
portant
chacune
des
quatre
lignées
sur
des
parcelles
secondaires.
Le
dispositif
expérimental
utilisé
était
le
système
de
blocs
complètement randomisés
(Completly Randomised Bloc Design ou CRBD
en anglais) avec 8 répétitions en 1985 et 5 répétitions en 1986.
Deux
semis décalés
ont
été
effectués
chaque
année
pour étudier
l'effet
de
la
date
de
semis.
En
vue
d'étudier
les
effets
des
maladies foliaires sur le rendement des lignées, des débris de mil
USDA Research Geneticist, Coastal Plain Kxperiment Station, Tifton GA 31797 USA
2

infecté en pépinière et
hâché à
la machine ont été uniformément
répandus
dans
le
champ
à
chaque
saison
de
culture,
au
moment
opportun.
Les
résultats
ont
montré
que
la
précocité
des
lignées
a
augmenté leur sensibilité aux maladies foliaires,
le tallage,
la
taille des grains et
le
rendement,
mais a
diminué
la taille des
plants. Le nanisme des lignées a augmenté le tallage mais a diminué
la productivité (masse des grains d'une chandelle) et le rendement.
La
forte
densité
de
population
des
plantes
a
plus
favorisé
la
maturité des plants et leur sensibilité aux maladies foliaires, et
plus augmenté la taille des plants, mais moins favorisé le tallage
et
la
productivité
en
comparaison
avec
la
faible
densité
de
population.
Le semis tardif
a eu tendance à
réduire
le temps de
maturité,
le tallage,
la productivité et
le rendement en grains,
mais
a
augmenté
la
taille
des
plants.
L'effet
des
maladies
foliaires,
bien que
statistiquement significatif sur le tallage,
la
productivité
et
le
rendement,
n'était
pas
agronomiquement
important.
LE VOLET AMELIORATION / GENETIQUE DES PLANTES
Ce volet amélioration devrait permettre de déterminer d'une part
les bases génétiques de la précocité (ou maturité), de la longueur
des chandelles et de
la taille
(grosseur) des grains,
et d'autre
part,
les possibilités de créer des cultivars nains,
précoces, à
longues chandelles
et
à
gros
grains.
Trois
lignées
de
mil Tift
(crées à Tif ton, Georgia)
et trois
lignées introduites à Tif ton,
soit au total six lignées ont été croisées jusqu'aux backcross et
à la génération F2, en passant par la Fl , dans le cadre de cette
étude.
L'analyse des résultats a
permis
de noter que
l'hétérosis était
faible
(-11 à 8 %)
pour la précocité (maturité),
la longueur des
chandelles et
la taille des
grains,
alors que
l'héritabilité au
sens large mesurée au niveau des parcelles était respectivement de
65
%,
58 % et
74 %,
pour ces trois
caractères.
La
fréquence de
distribution en F2 était continue pour la longueur des chandelles
et la taille des grains mais à pics pour la précocité. Le phénotype
gros grain était dominant sur petit grain. Pour la précocité et la
longueur de
la chandelle le sens de
la dominance était variable
selon les
croisements.
La superdominance
a
été notée
en
ce qui
3

concerne la taille des grains et
la
longueur des
chandelles.
Le
nombre minimal de loci (gènes) contrôlant chaque caractère révélé
par l'étude est de 1 ou 2 pour la taille des grains,
au moins 2
pour la longueur de la chandelle et 1 à 3 gènes pour la précocité.
Mots clés: mil à chandelle,
Pennisetum glaucum,
dates de
semis, précocité,
densité, nanisme, maladies foliaires,
longueur
de
chandelle,
taille
des
grains,
Tif ton,
lignées Tif t, nombre de gènes,
loci
4

( l
) INTRODUCTION
Le mil à chandelle, Pennisetum glaucum, est par ordre d'importance
socio-économique, la sixième céréale du monde et la céréale la plus
cultivée dans les
zones semi-arides
où,
selon Burton
(1983),
il
peut
croître
et
produire
une
récolte
sur
des
sols
sableux
ou
caillouteux, trop acides, trop secs ou trop stériles pour le sorgho
(Sorgum bicolor(L.) moench) ou pour le maïs (Zea ma ys (L.)
). Selon
le
même
auteur,
le
mil
a
un
grand
potentiel
de
production
fourragère et peut produire plus de fourrage que le sorgho ou le
maïs
(Burton,1983),
dont
les
meilleurs
hybrides
surclassent
cependant
ceux
du
mil
en
rendement
en
grains
en
conditions
optimales.
Frère
(1982)
a
en
ef f et
montré
que
les
rendements
moyens en grains du maïs, du sorgho et du mil sont respectivement
de
4500,
3000
et
1250
kg/ha
dans
les
meilleures
conditions
de
culture et
de
1000,
875
et
600 kg/ha,
respectivement,
dans des
conditions moins favorables.
Ce faible rendement en grains du mil mérite d'être corrigé par le
développement de cultivars plus productifs surtout à cause du fait
qu'il est irremplaçable dans certaines zones semi-arides et que par
conséquent une meilleure production permettrai t de mieux satisfaire
les
besoins
des
populations
qui
ne
peuvent
cultiver
que
cette
céréale.
De
meilleurs
rendements
chez
le
mil
permettraient
aussi
d' encourager
l'intérêt
croissant
pour
le
sorgho
et
le
mil
en
Amérique Latine (560%), en Asie (100%) et en Afrique (66%), selon
Frère (1982) et aux USA où le mil passe progressivement de culture
fourragère en culture céréalière, selon Hanna (1985, communication
personnelle) utilisable pour l'alimentation de la vollaille.
D'une façon plus générale,
l'amélioration de la production du mil
est
une
nécessité
pour
l'alimentation
en
zones
tropicales
à
croissance
démographique
rapide
et
aux
conditions
climatiques
défavorables pour la culture d'autres céréales. Cette augmentation
des
rendements
de
mil
peut
se
faire
par
le
développement
de
cul tivars
de
mil
précoce
à
longues
chandelles,
à
gros
grains,
résistant à
la sécheresse et aux maladies. Mais parallèlement on
peut aussi augmenter
les rendements par
l'utilisation de bonnes
méthodes de vulgarisation.
1

Selon
les
informations
disponibles
(prospect ions
à
travers
les
zones
de
culture,
Rachie
and
Maj mudar
( 1980 ) ,
etc) ,
les
potentialités pour accroître les rendements de mil existent déjà
mais elles ne sont pas rassemblées dans un même cultivar. On peut
citer par exemple les cultivars
'Bajra'
à gros grains de l'Inde;
'Sanio'
à gros grains,
résistant
à
la sécheresse mais tardif au
Sénégal
'Zongo', mil
tardif à très longues chandelles (jusqu'à
100 à 150 cm) au Niger;
'Maiwa', mil tardif du Nigéria, résistant
au
mildiou
ou
maladie
de
l'épi
vert,
causé
par
Sclerospora
graminicola
(Sacc.)
Schroet
;
et
les
mils très
précoces
à gros
grains mais à courtes chandelles
'Missi' ou 'Gnari'
du Togo.
La combinaison des caractéristiques de bons rendements au niveau
d'un seul cultivar nécessite d'être faite
surtout aux USA où les
conditions économiques peuvent permettre la culture rentable des
hybrides et des lignées hautement performantes.
Les objectifs du thème de la présente thèse étaient d'étudier les
effets agronomiques des gènes controllant la précocité,
la taille
des
grains,
la
longueur
des
chandelles,
le
nanisme
(pouvant
permettre la récolte à la machine), et la
résistance/tolérance
à la rouille
causée par Puccinia substriata var indica
Zimm et
à la pyriculariose causée par pyricularia grisea (Cke) Sale. Deux
projets
avaient
été
conçus
pour
atteindre
ces
objectifs,
l'un
concernant l'aménagement des plantes et
la génétique,
et l'autre
l'amélioration des plantes et la génétique.
1. Aménagement/Génétique des Plantes
(Management/Genetic studies)
L'objectif poursuivi est la détermination des effets de la date de
semis, de la densité de population des plants, du nanisme et de la
précoci té des
lignées
de mil,
et
des maladies
foliaires
sur
le
rendement en grains du mil et ses composantes.
2. Amélioration/Génétique des Plantes
(Plant breedingjGenetic studies)
Les objectifs poursuivis étaient
:
a) La détermination des bases génétiques de la longueur des
chandelles et de la taille des grains de mil
b) L'étude des possibilités du développement de lignées de mil
précoce, à longues chandelles et à gros grains.
2

I I
REVUE BIBLIOGRAPHIQUE
D'immenses
progrès
ont
été
réalisés
en
agriculture
et
en
amélioration
des
plantes
dans
différentes
parties
du
monde
et
cependant il y a encore un grand besoin d'aliments de bonne qualité
pour nourrir
la population humaine
en croissance rapide et pour
éviter de grandes famines
telles que celle qu'a connu l'Ethiopie
en 1985.
Pour accroître la production mondiale en aliments
:
- les domages causés par les ravageurs et les maladies doivent être
minimisés ;
-
les rendements agricoles augmentés ;
- de nouvelles variétés vulgarisées partout où besoin est ;
- de nouvelles cultures introduites dans des zones où, à cause de
barrières
géographiques
ou
culturelles,
elles
n'étaient
pas
cultivées.
Tel est le cas du mil à chandelles largement cultivé comme plante
fourragère
au
sud
des Etats
Unis
(Burton,
1951,
1980,
1981 and
1983; Hanna and Burton, 1985a) mais dont les grains ne sont pas en
alimentation animale et humaine. but its grain is not used as human
food
or
for
animal
f eed.
Cependant,
récemment,
Smith
( 1987)
a
montré
que
les
grains
de
mil
et
de
sorgho
peuvent
valablement
remplacer
le maïs
dans
la
ration alimentaire des
poussins.
Ceci
peut amener les agriculteurs américains à s'intéresser à la culture
du mil dans
le future,
mais la réussite de cette culture dans ce
pays nécessite de bons rendements, des variétés adaptées au travail
(récolte en particulier) à la machine et des lignes de conduite sur
l'aménagement des plantes et la production.
Le développement de lignées et de variétés hybrides de mil nain,
précoce, à longues chandelles et gros grains, et un bon programme
d'aménagement des plantes permettraient d'encourager et d'augmenter
la production en grains du mil aus USA.
Et puis pareils cultivars
(lignées et hybrides de mil) pourraient être cultivés ailleurs dans
le monde pour augmenter la production alimentaire.
Bien que le mil a connu un certain nombre de changements de nom au
cours de son histoire,
(Chase, 1921; Terrel,
1976; Brunken et al.,
1977 and Jauhar, 1981),
le nom scientifique utilisé ici sera celui
publié tout récemment,
Pennisetum glaucum (L.) R.
Br., par Terrel
et al.,
(1986).
3

4
Le reste de cette revue bibliographique parle de
-
la biologie et morphologie du mil ;
-
l'aménagement associé à la génétique du mil;
l'amélioration et génétique du mil (taille des grains,
longueur des chandelles, précocité).
Elle a permis essentiellement de montrer que, malgré les travaux
de recherche importants effectués sur le mil à travers le monde,
des
informations
manquent
sur
l'aménagement
des
plantes
et
l' hérédité
des
caractères
liés
au
rendment
du
mil
que
sont
la
longueur des chandelles,
la taille des graines et la précocité.

5
( I I I
) MATERIELS ET METHODES
Le
thème
de
cet te
thèse
était
décomposée
en
deux
proj ets
de
recherche.
L'un devrait fournir des informations sur
a) les effets agronomiques de la taille des plantes, de la maturité
(le temps mis pour fleurir) et la densité de population basée sur
la distance entre deux plants voisins,
sur le rendement en grains
et ses composants, et
b)
les effets des
maladies
foliaires
(le
complexe pyriculariose-
rouille) sur le rendement.
Le second projet devait déterminer
les bases héréditaires de
la
longueur de la chandelle et de la taille des graines et étudier la
faisabilité de la création de lignées et d'hybrides de mil nain,
précoce,
à longues chandelles et à gros grains.
Les
deux
projets
ont
été
conduits
à
Coastal
Plain
Experiment
Station, à Tifton/Georgia aux USA, au champ et en serre.
A.
Aménagement/Génétique des Plantes
(1) Matériels
Quatre lignées proches-isogéniques (différentes seulement au niveau
de quelques loci) de mil ont été utilisées.
1. La lignée Tift 23B vulgarisée le 1er Juillet 1963 (Burton,
1965a), était décrit comme il suit:
Il
1.8 à 2.4 m de hauteur avec
des grains de couleur gris bleu sur des chandelles de 12.5 à 20 cm
de long.
Semée en début Mai, cette
lignée fleurit en 90 jours et arrive à
maturité
3 à
4 semaines
plus tard,
mais
semée en mis Août elle
fleurit en 70 jours. Elle est entièrement fertile et constitue le
mainteneur de stérilité de la lignée mâle stérile Tift 23A ".
2. La lignée Tift 23BE a été développée par sélection d'un mil
précoce d'une population de backcross 2 ou BC2, (Hanna and Burton,
1985a, 1985b). Elle diffère de Tift 23B par sa plus petite taille
moyenne (1.4 m contre 1.9 m),
ses plus courtes chandelles (17.8 cm
contre 20.0 cm), son plus petit diamètre de la tige (15 mm contre
20 mm), ses plus courts pédoncules (21.8 cm contre 24.5 cm), et son
nombre réduit d'entre-noeuds (6 contre 9). Plantée en fin Mai-début
Juin,
"Tift
23BE
peut
fleurir
en
45
à
50
j ours
et
arr i ver
à
maturité en 70 à 75
jours alors que
la lignée Tift
23B, dans les

6
mêmes conditions, fleurit en 75 à 80 jours après le semis et arrive
à maturité en 100 à 105 jours".
3.
La lignée Tift
23DB a
été crée par transfert du gène de
nanisme
d
23B.
Elle
2 de
la
lignée
Tift
239
à
la
lignée
Tift
ressemble à Tift 23B sauf pour sa plus petite taille.
Le gène .9.2
réduit
la
longueur
des
entre-noeuds
sans
modifier
celles
du
pédoncule et de la chandelle (Burton,
1967).
4.
La
lignée
Tift
23DBE
a
été
crée
par
transfert
du
gène
récessif el'
du mil
'Katherine'
d'origine africaine,
à
la lignée
naine
tardive
Tift
23DB.
Tift
23DBE
est
insensible
à
la
photopériode et peut donc fleurir
entre 45
et
55
jours après le
semis à n'importe quel moment de l'année (Burton, 1981).
Le tableau suivant montre quelques caractères de ces quatre
lignées enregistrés à la suite des deux années d'étude
Précocité (50%
Taille
Longueur
Lignée
floraison femelle)
Plante
Chandelle
1.
Tift 23B
71-81 jours
2.30 m
18-28 cm
2. Tift 23BE
54 jours
1. 60 m
16-23 cm
3. Tift 23 DB
76-83 jours
1.30 m
16-20 cm
4. Tift 23DBE
51 jours
0.90-1 m
15-24 cm
(2) Méthodes
Deux
semis
par
an
ont
été
effectués
en
1985
et
1986
à
Tifton/Georgia à Coastal Plain Exper imental station, en split plot,
avec
8
répétitions
en
1985
et
5
en
1986.
Chaque
répétition
comportait deux parcelles principales différant par
leur densité
de population et quatre parcelles secondaires représentant chacune
des quatre lignées. Chaque parcelle secondaire comportait 6 lignes
de 4.8 m de long distantes l'une de l'autre de 0.9 m. Une bordure
de deux lignes entourait tout le champ et les parcelles principales

7
étaient
distantes
de
1,20
m
tandis
que
0,80
m
séparait
les
parcelles secondaires.
Le semis étant
fait
à
la machine et en ligne continue,
i l était
nécessaire de démarier en respectant les distances de 2,5 cm ou de
17
cm entre les plants selon la densité de population de plants
voulue sur les parcelles principales.
Pour assurer à la
fois l'infection et son uniformité en deuxième
saison où
les
plantes
sont
naturellement
exposées
aux
maladies
foliaires, des débris de plantes infectées en pépinière et hachées
à la machine étaient uniformément répandus dans le champ, environ
40 jours après le semis.
Chaque semis était toujours précédé par l'épandage de 280 kg/ha de
l'engrais NPK 5-10-50.
L'entretien a
été fait
à la fois à l'aide
d'herbicides et de sarclage à la machine.
Pour lutter contre les
insectes
et les
oiseaux
granivores,
des
sachets
en
papier kaki
spécial
(papier
kraft)
traités
par
trempage
dans
une
solution
d'insecticide
ont
été
utilisés
pour
protéger
les
chandelles
récoltables, juste au début de la formation des grains issus de la
fécondation libre.
Au besoin, les plantes sont traitées à l'Azodrin ou dimethyl, cis-
l-methyl-2-methylcarbamoylvinyl phosphate (McEwen et al. ,1979), au
taux recommandé pour le contrôle des insectes.
Les données recueillies concernaient 10 caractères : le nombre
de plants
par parcelle
(number of
plants per
plot),
la
date de
floraison
(heading date),
le nombre de
chandelles par parcelle,
(Head number per plot), la hauteur des plants (Plant height) en cm,
la tolérance/sensibilité aux maladies
foliaires
(Disease rating)
en utilisant une échelle de 0 à 5 (la note 0 étant attribuée aux
plantes saines et la note 5 aux plantes sévèrement attaquées),
la

8
longueur des chandelles (Head length) en cm,
la masse des grains
d'une chandelle
(Total head
seed weight)
en g,
la masse
de 100
grains (Weight of 100 seeds)
en g,
le nombre moyen de chandelles
par plante (Average head number per plant), et le rendement (Yield)
en
kg/ha.
L'analyse
de
variance
pour
le
split
plot
et
la
comparaison
des
moyennes
par
le
test
de
Duncan
ont
permis
d'organiser les données pour une meilleure analyse.
B.
AMELIORATION/GENETIQUE DES PLANTES
(1) Matériels
L'objectif de ce projet était de déterminer les bases génétiques
de la taille des grains et de la longueur de la chandelle de mil
et d'étudier la faisabilité de la création d'un mil précoce, nain,
à gros grains et à longues chandelles.
Six origines supposées être
des lignées ont été utilisées pour ce projet :
1)
La lignée
Ti ft
23DBE
décr i te plus
haut
:
naine,
précoce,
à
petits grains (0.51 g /100 grains) et à courtes chandelles (environ
20 cm en moyenne),
(Burton, 1969).
2)
La
lignée Tift
23B
:
géante,
tardive,
à petits
grains
(0.44
g/100 grains)
et à
courtes chandelles, proche-isogénique de Tift
23DBE.
3) La lignée Tift 18BE
: c'est une mutation précoce de la lignée
tardive Tift 18B vulgarisée en Mai
1965 (Burton, 1965b)
comme le
mainteneur
de
stér i lité
de
la
l ignée
mâle
stér i le
Ti ft
18A et
décrite,
(cette
lignée
Tift
18B),
comme
insensible
à
la
photopériode qui
fleurit
à
Tif ton en
90
jours
pour un
semis au
printemps et en 70 jours pour un semis en été (mis Août). Tift 18BE
fournit des plants de taille moyenne portant des grains blancs sur

9
de chandelles de 45 à 90 cm et fleurissant en 45 ou 35 jours après
le semis,
selon la date de semis.
4) Le cultivar
'Gero'
à longues chandelles
Il a été introduit à
Tif ton
par
Dr.
Glenn
Burton
en
1962.
Il
est
insensible
à
la
photopériode
et ses
chandelles
de
taille
semblable
à
celle des
chandelles de Tift 18BE mais plus grosses et plus
robustes.
Bien
que décrit au Nigéria comme un mil précoce lorsqu'on le compare au
mil photopériodique
'Maïwa'
(Rachie and Majmudar,
1980), Gero est
tardif à Tif ton (floraison de 70 à 90 jours après le semis) comparé
à Tift 23DBE, 23BE ou 18E.
Les
deux
mils
à
longues
chandelles
ont
des
grains
de
petite
à
moyenne taille (0.76 g /
100 grains,
en moyenne).
5) Le cultivar
'Togo'
Il est d'origine togolaise
comme son nom
l'indique avec des plants précoces de taille moyenne,
de courtes
grosses chandelles et à gros grains
(1,18 g
/
100 grains) qui a
transité par le Niger où il fleurit en 36 jours. A Tif ton, Togo est
aussi précoce que Tift 23DBE et est hautement male-stérile.
6) Le cultivar
'Walor Kassens'
C'est une introduction du Ghana
en 1966. C'est un mil précoce qui fleurit 45 jours après le semis
et qui porte de courtes chandelles à grosses graines
(1.26 g /100
grains) .
(2) Méthodes
Pour atteindre les objectifs fixés, tous les croisements possibles
successifs ont
été effectués,
au champ
et en
serre,
en
1985 et
1986, entre les six origines. La possibilité de conserver le pollen
au froid pour une utilisation ultérieure même après un an,
(Hanna
et al.,
1983),
a
permis de
résoudre
le
problème du
décalage de
floraison entre
les précoces et
les tardifs.
Parfois,
les semis
décalés à cause de la diversité des expériences sur la même station

la
mais utilisant
les mêmes cultivars
ont permis de
transporter du
pollen d'un champ à un autre pour résoudre le même problème.
Les parents,
les hybrides,
les backcross et les générations F2 ont
été semés ensemble en parcelles répétées au champ en 1986 et 1987
pour mesurer les différents paramètres à analyser. Pour les parents
et les hybrides F1 qui sont génétiquement homogènes les parcelles
avaient
4/45
m de
long
alors
que
les
populations
hétérogènes
backcross et F2 occupaient des parcelles de 28/45 m de long en 1986
et de 62 m en 1987.
Le
démar iage
nécessaire
après
le
semis
en
ligne
continue
à
la
machine laissait 17 à 20 cm entre les plants individuels de la même
ligne, deux lignes étant distantes l'une de l'autre de 0/90 m. Les
conditions de culture sont identiques à celles du volet aménagement
des plantes.
Les autofécondations
nécessaires
pour
maintenir
les
lignées
parentales ou pour obtenir les générations F2 étaient réalisées à
l'aide des sachets en papier kraft traités à l'insecticide et mis
à temps pour éviter la contamination par du pollen extérieur. Ces
sachets sont agrafés contre l'effet du vent et des oiseaux.
Pour les croisements, des sachets en papier plastifié (glassine)
non
traités
à
l'insecticide
étaient
utilisés
pour
éviter
la
contamination génétique,
puis,
à
la
sortie des stigmates qui se
voyaient
à
travers
ce
papier
spécial/un
sachet
kraft
traité
renfermant
le pollen
du parent mâle
remplaçait soigneusement
le
papier en glassine. Tout comme pour l'autofécondation ce sachet de
fécondation portant le nom du parent mal est agrafé pour empêcher
le vent de l'emporter.
Pour les longues chandelles de Tift 18E et de Gero les sachets de

11
35 cm utilisés ne pouvaient théoriquement couvrir que le sommet de
la chandelle qui seul a été utilisé pour la suite.
Collection des données
Pour ce second sujet les traits suivants ont été étudiés :
1. La date de floraison des plantes autofécondées
(en jours)
2.
La longueur des chandelles (en cm)
3.
La masse moyenne des grains d'une chandelle par plante (en g)
4.
La masse de 100 grains (en g)
Méthodes d'analyses
L'analyse
des
moyennes
brutes
enregistrées
a
montré
des
coefficients de variation trop élevés pour certains traits et cela
a conduit à des transformations de données comme le suggérait Hoyle
(1973)
en pareil cas.
Cependant,
les données originelles ont pu
être directement utilisées pour des raisons pratiques.
L'analyse des variances a été effectué sur les données recueillies
au
ni veau
des
parents
croisés
et
de
leurs
hybrides
après
leur
culture
en
1987
avec
le
dispositif
expérimental
CRBD
à
5
répétitions.
Les résultats (Tables 30 & 31) ont montré pour certains traits des
variations intra cultivar qui étaient dues soit aux variations de
type
environnemental,
soit
à
des
diff érences
génétiques
entre
plants du
même
cul ti var
qui
était
pourtant
considéré comme
une
lignée.
La comparaison des variances intra-cultivar en prenant celles des
lignées
certifiées
Tift
comme
références,
a
montré
que
les
cul ti vars
1 Géro',
'Walor 1
et
1 Togo'
étaient
trop
var iables

1
intérieurement pour être des lignées
(voir tableaux 1 et 2 de l
thèse originale).
Pour chaque croisement entre deux lignées parentales
(Pl et P2) la
hiérarchie des variances
jusqu'en F2, en passant par la FI et les
backcross
(BC) s'établit comme il suit
Var (F 2) > Var (BC) > Var (FI)
= Var
(Pl) = Var (P 2 ).
L'analyse a montré que cette hiérarchie n'a été respectée que pour
certains
croisements
et
la
littérature
disponible
montrait
que
pareille déviation a été déjà enregistrée (Burton,
1951).
Ces déviations
et
la
variabilité
sûrement
génétique
au
sein de
certains
cultivars
considérés
au
départ
comme
des
lignées
ont
condui t
à
l'abandon
de certaines
données
et ont
donc
réduit
le
nombre de croisements à utiliser pour l'étude génétique envisagée
au départ.
Pour les croisements retenus surtout,
l'hétérosis a été calculé en
utilisant les formules proposées par Fehr (1987,
p.
175) et Jinks
(Frankel,
1983 p.
4).
L'héritabilité au sens
large a
été calculée selon la méthode de
Allard
(1960),
mais
les
données
retenues
ne
permettaient
pas
d'estimer l'héritabilité au sens strict.
La distribution des
fréquences
a
été faite
à
l'aide du logiciel
SIGMAPLOT.
Pour
des
raisons
techniques
le
nombre
de
gènes
contrôlant
la
précocité, la longueur des chandelles et la taille des grains a été
estimé
à
la
fois
par
la
méthode
attribuée
par
Burton
(1951)
à
Sewell Wright et par la méthode du chi deux suggérée par Hanna et
al., en 1978,
qui ont aussi proposé le test de chi
deux pour la
détermination de
la
liaison génétique également
utilisé dans ce
projet.

13
RESULTATS ET DISCUSSION
A. Aménagement/Génétique des Plantes
Les principaux résultats et la discussion concernant cette partie
sont reportés dans l'article en français
joint à ce même dossier
et intitulé EFFETS DES GENES Ql et ~2 SUR LES CARACTERISTIQUES DES
GRAINS ET DES PLANTES CHEZ LE MIL Pennisetum glaucum (L.)
R.
Br.
(Actes des Journées Scientifiques de l'U.B., N°4, Vol.
II, pp. 139
à 152.
B. AMELIORATION/GENETIQUE DES PLANTES
Pour cette partie les figures et les tableaux auxquels il sera fait
référence ne sont pas traduits en français et le lecteur est prié
de
se reporter
à
la thèse
en anglais.
Merci pour
la gymnastique
nécessaire.
Il est rappelé aussi que ce sont trois caractères qui
sont étudiés i c i : la maturité (maturity) ou précocité des plantes,
la longueur des chandelles
(head length)
et la taille des grains
(seed size) exprimée par la masse de 100 grains (100 seed weight).
Les
tableaux 17,
18 et
19
(pp.
70 à
72
de
la thèse en anglais)
donnent
les
valeurs
de
l ' hétérosis
pour
les
trois
traits.
Ces
résultats montrent que
:
1. L'hybride était plus précoce que le parent tardif et en moyenne
plus précoce aussi que le parent moyen (la moyenne des deux
parents croisés).
2.
L'hybride avait des chandelles en moyenne plus longues que
celles du parent moyen et mais plus courtes que celles du parent
à longues chandelles.
3.
L'hybride avait des grains dont la taille est intermédiaire

14
entre celle des grains du parent moyen et du parent supérieur
(parent à gros grains).
Certains croisements ont montré une
superdominance pour la taille des grains.
Le tableau 20 concerne l'héritabilité au sens large pour les trois
traits qui peut être résumée comme il suit :
Héritabilité
Caractère
Limites
moyenne
Maturité
29% -
98%
65%
Longueur de chandelle
39% - 81%
58%
Taille des grains
52% -
93%
74%
Les moyennes ci-dessus peuvent être comparées aux moyennes obtenues
à partir des moyennes des variances des différentes générations de
chaque croisement et qui sont respectivement de 51%, 60%, 81% pour
la maturité,
la
longueur des chandelles et
la taille des grains
mais
on
remarque
que
l'ordre
est
un
peu
inversé
pour
les
deux
premiers traits.
Les figures
(pp.
74 à 86 de la thèse) indiquent les fréquences de
distribution des
individus F2 selon leurs phénotypes respectifs,
avec
indicatif
de
la
place
qu'occupe
chacun
des
parents
et
l'hybride FI dans cette distribution. Ceci permet de voir si chaque
parent est
représenté ou
non
en Pz
et
si
le trait
envisagé est
analysable qualitativement ou non.
A cet effet les figures
lB de
la page 75 indiquent deux classes avec la domination partielle du
parent tardif Pz et suggèrent l'influence d'un gène à deux allèles
pour la maturité comme l'avaient signalé Burton (1981), and Hanna
and Burton,
(1985a) chez les lignées concernées.
La longueur des chandelles et
la taille des grains montrent une
distribution
continue
(figures
2
et
3)
suggérant
la
nature
quantitative et
une
analyse
mendélienne
(qualitative)
difficile
pour les deux traits.
Malgré tout,
la détermination du nombre de
gènes contrôlant chaque caractère a
été tentée et
les résultats
sont consignés dans le tableau 21 (p. 87 de la thèse). Avec toutes
les
réserves
émises
plus
hauts,
en
particulier
sur
la
nature
génétique des cultivars utilisés,
on peut dire que la taille des
grains
semble dépendre
d'un
plus
petit
nombre
de
gènes
que
la
longueur des chandelles. Peut-être aussi que la maturité ne dépend

15
pas toujours d'un seul locus chez tous les cultivars du mil.
Le test
du chi deux
suggéré également pour
la détermination du
nombre de gènes
(Hanna et al. 1978) ne s'applique en réalité que
pour les caractères dont les effets épistasiques sont prédominants
alors même que les effets additifs et semblent être importants chez
le mil (Burton, 1951 ; Upadhyay et Murty, 1971). Ainsi les chiffres
des tableaux n026 relatifs à ce test sont plutôt indicatifs.
CONCLUSION
A. Aménagement/Génétique des Plantes
Voir l'article
'EFFETS DES GENES Qj et ~2 SUR LES CARACTERISTIQUES
DES GRAINS ET DES PLANTES CHEZ LE MIL Pennisetum glaucum (L.) R.
Br.' (Actes des Journées Scientifiques de l'U.B., N°4, Vol. II, pp.
139 à 152.
B. AMELIORATION/GENETIQUE DES PLANTES
Cette étude génétique nous a permis d'essayer un certain nombre de
méthodes de travail mais le matériel végétal ne nous semblait pas
très approprié. Bien que la base génétique de la maturité, de la
longueur de la chandelle et de la taille des grains nia pas pu être
clairement élucidé, la méthode originale utilisée pour déterminer
la nature
(lignée ou pas
lignée)
des cultivars
reste
un acquis
important qui pourrait rendre service dans les études ultérieures.