LES DESHYDRATATIONS AU COURS DES
DIARRHÉES AIGUES INFECTIEUSES OBSERVÉES
EN AFRIQUE NOIRE

THÈSE

présentée et publiquement soutenue devant
la Faculté de Médecine de Montpellier

par

Sognon Dominique ATCHADE
né le 18 mars 1948 à PORTO-NOVO (Benin)

pour l'obtention du grade de
DOCTEUR EN MéDECINE

JURY : MM.
A. BERTRAND Professeur
Président
R. BAYLET Professeur
A. SERRE Professeur
J. JOURDAN Maître de Conférences
Agrégé

JUIN 1979
FACULTE DE MEDECINE

PERSONNEL ENSEIGNANT DE LA FACULTE

Professeurs honoraires

Professeurs titulaires

Disciplines cliniques

Clinique médicale A.. MM. L. BERTRAND
Clinique médicale B.. VALLAT
Clinique propédeutique médicale................................. DAUVERCHAIN
Pathologie médicale et physiopathologie clinique........BARJON
Thérapeutique et clinique des maladies infectieuses A..... A. BERTRAND
Clinique des maladies infectieuses B et épidémiologie..... BRUNEL
Radio-diagnostique.. LAMARQUE
Clinique pneumo-phtisiologique................................ F. MICHEL
Clinique cardiological et cardiologie expérimentale...... LATOUR
Cardiologie expérimentale et maladies vasculaires......... P. PUECH
Clinique des maladies métaboliques et endocriniennes..... MIROUZE Doyen honoraire
Clinique rhumatologique.. H. SERRE
Clinique des maladies de l'appareil digestif................ H. MICHEL
Clinique de dermatologie et syphiligraphie................... MEYNADIER
Clinique neurologique.. LABAUGE
Clinique des maladies des enfants, hygiène du 1er âge... JEAN
Clinique chirurgicale A.. JOYEUX
Clinique chirurgicale B.. CARABALONA
Pathologie et clinique propédeutique chirurgicales........ BORIES-AZEAU
Technique opératoire et chirurgie expérimentale.......... MARCHAL
Clinique urologique.. GRASSET
Clinique de chir. orthopédique et réparatrice et chir.infantile.. J. VIDAL
Clinique chirurgicale thorac. et cardio-vasculaire........ NEGRE
Clinique neuro-chirurgicale...................................... CROS
Clinique gynécologique et obstétricale........................ DURAND
Gynécologie-obstétrique... VIALA
Clinique ophtalmologique.. BOUDET
Stomatologie
Clinique d'oto-rhino-laryngologie et chr. maxillo-fac... GUERRIER
Disciplines biologiques:
Histologie et embryologie... SENTEN
Physique médicale... BENZECH-Doyen honoraire
Biochimie médicale A. CRASTES de PAULET
Biochimie médicale B. MAGNAN de BORNIER
Physiologie I. MACABIES
Physiologie II. CHARDON
Pharmacologie et pharmacodynamie. M. ALRIC
Microbiologie et virologie. ROUX
Histoire nat. méd. parasitologie et méd. exotique... RIOUX
Disciplines mixtes:
Anatomie pathologique. PAGES
Anesthésiologie. DU CAILAR
Médecine légale et médecine sociale. AYRAL
Médecine préventive (nutrition). LEVY
Hématologie. CAZAL
Clinique carcinologique. ROMIEU
Pathologie expérimentale. PASSOUANT
Pathologie et thérapeutique générales. CADILHAC
Anatomie. RABISCHONG Doyen

Mise à jour le I-I-1979

Professeurs titulaires à titre personnel

Radiologie (option thérapeutique). MM. H. FOURQUIER
Endocrinologie, métabolisme, nutrition. JAFFICL
Rhumatologie. SIMON
Pédiatrie, génétique médicale. BONNET
Chirurgie générale. VERNET
Chirurgie thoracique et cardio-vasculaire. THEVENET
Oto-rhino-laryngologie. DEJEAN
Histologie, embryologie, cytogenétique. CATAYEE
Biophysique. LLORY
Biophysique. SUQUET
Biochimie. DEMAILLE
Pharmacologie. Mme LOUBATIERES
Médecine préventive et santé publique, hygiène. MM. BAYLET
Hématologie, maladies du sang (option clinique). IZARN
Cancérologie (chirurgie). PUIJOL
Anatomie et organogénèse (option biologique). BOSSY

Professeurs sans chaire

Médecine interne. MM. MANDIN
Médecine interne. CIURANA
Thérapeutique. S. FABRE
Maladies infectieuses. F. JANBON
Maitres de conférences agrégés

Cardiologie ... HERTAULT
Cardiologie ... GROULLEAU-ROUX
Néphrologie ... Ch. MION
Chirurgie générale PRIOTON
Chirurgie générale COLIN
Chirurgie générale BAULEM
Chirurgie générale DOSSA
Chirurgie générale M. BALMES
Chirurgie infantile POUSS
Neuro-chirurgie VAHOVITCH
Histologie, embryologie, cytogénétique SENELAR
Physiologie ... BIANCHI
Physiologie ... ORSETTI
Bactériologie, virologie
Anesthésiologie ... MM. MI. SERRE
Hématologie, maladies du sang (option biologique) EMBERGER
Cancérologie (option clinique) SOLASSOL
Immunologie ... MM. SERRE
Médecine expérimentale (option biologique). PALDY-MOULINIER
Anatomie et organogénèse (option biologique) ... PALEIRAC

Médecine interne .. P. BALMES
Médecine interne .. C. JANBON
Médecine interne .. J. FOURCADE
Médecine interne .. Michel BRUNEL
Médecine interne .. OTHONIEL
Médecine interne .. MINRAN
Médecine interne .. F. BLANC
Thérapeutique ... J. JOURDAN
Maladies infectieuses ASTRUC
Radiologie (option diagnostique) CASTAN
Radiologie (option diagnostique) DUMAZER
Radiologie (option diagnostique) SENAC
Endocrinologie ... MONNIER
Rhumatologie ... J. SANY
Hépatologie, gastro-entérologie J.L. BALMES
Dermato-vénéréologie GUILHOU
Neurologie ... PEGURET
Psychiatrie d'adultes POUQUET
Pédo-psychiatrie VISIER
Pédo-psychiatrie AUSSILLOUX
Pédiatrie, génétique médicale DUMAS
Pédiatrie, génétique médicale DUMAS
Pédiatrie, génétique médicale RIEU
Pédiatrie, génétique médicale BOSC
Chirurgie générale H. LAPEYRIE
Chirurgie générale DAYAN
Orthopédie, traumatologie, chir. plastique et reconstructive ALLIEU
Urologie .. NAVRATIL
Chirurgie thoracique et cardio-vasculaire CHAPTAL
Chirurgie thoracique et cardio-vasculaire : H. MARY
Neurochirurgie : FREREBEAU
Ophtalmologie : ARNAUD
Oto-rhino-laryngologie : L. FABRE
Histologie, embryologie : BUREAU
Biophysique : MATHIEU-DAUDE
Biophysique : CALLIS
Biochimie : MIRO
Biochimie : DESCOMPS
Biochimie : ROCHEFORT
Biochimie : H. MION
Physiologie : MANSARD
Bactériologie, virologie : BOURGEOS
Parasitologie : RAMUZ
Anatomie pathologique : JARRY
Anatomie pathologique : BALDET
Anesthésiologie : MARTY-DOUBLE
Anesthésiologie : ROQUEFEUIL
Hématologie, maladies du sang (option clinique) : NAVARRO
Anatomie et organogénèse (option clinique) : BONNEL
Anatomie et organogénèse (option clinique) : GODLESKI
A ma mère

Voici enfin ton rêve réalisé; de ton vivant tu as toujours souhaité que l'un de tes fils devienne médecin. Je te promets d'exercer cette profession le plus correctement possible en signe de fidélité à ta mémoire.

A mon père, mes frères et soeurs

Malgré cette distance qui nous sépare vous avez su ouvrir en moi la chaleur familiale tout le long de l'apprentissage de ma future profession. En reconnaissance à votre affection je souhaite d'être parmi vous le plus tôt possible.

A Annie, Estelle et Audrey

Voici enfin le fruit de vos sacrifices, vous qui m'avez procuré joies, encouragement et équilibre; tout le mérite est pour vous.

A ma belle-mère Thérèse

qui par son courage a contribuer sans le savoir à la réalisation de ce travail; toute ma reconnaissance.
À notre Président de thèse

Monsieur le Professeur A. Bertrand

Vous avez éveillé en nous le souci des urgences en infections au cours de nos enseignements. Nous sommes très sensibles à l'honneur que vous nous faites en acceptant de diriger cette thèse malgré vos multiples occupations et les difficultés que cela pourrait vous poser.

Nous vous exprimons nos profonds sentiments de respect et nos sincères remerciements.

Monsieur le Professeur BAYLET

Votre vaste connaissance des problèmes sanitaires de notre Afrique à laquelle vous avez consacré une bonne partie de votre carrière nous a énormément aidé pour la documentation ; durant ce travail nous avons appris par vous la vraie Afrique médicale.

Nous vous exprimons nos sincères sentiments de gratitude.
A Madame le Professeur A. SERRE

Pour le grand intérêt que vous portez à notre formation ainsi que pour la compréhension de nos problèmes et à leur résolution.

Trouvez ici notre profonde reconnaissance.

Monsieur J. JOURDAN

Bien que très occupé vous avez su nous épauler efficacement durant tout ce travail.

Nous vous en remercions très vivement.
I INTRODUCTION

II QUELQUES DONNEES STATISTIQUES DE MORALITE PAR DEHYDRATATION

III RESPONSABILITE DES DIFFERENTS GERMES ISOLES :

A- BACTERIES

1) Choléra
2) Les salmonelles
3) Les shigeiles
4) Les colibacilles
5) Les autres enterobactéries
 - proteus hauseri
 - providencia

B- ROLE DES VIRUS

C- ROLE DES PARASITES

D- CONCLUSION

IV PHYSIOPATHOLOGIE

A- rappel

B- CYCLE ENTEROSYSTEMIQUE DE L'EAU ET DEFINITION DE LA DIARRHEE AIGUE

C- DIFFERENTS TYPES DE DIARRHEES

1) Le choléra : exemple de diarrhée liée a une enterotoxine
 a) toxine cholérique responsable de la diarrhée cholérique
 b) action pathogène de la toxine cholérique
 c) Immunité anti toxique
 d) localisation des pertes hydroelectrolytiques
 e) site d'action de la toxine cholérique
 f) mécanisme d'action de la toxine cholérique

2) Diarrhées par envahissement:
 a) diarrhée à shigeiles
 b) diarrhée à salmonelles
 c) diarrhée virale

D- CONCLUSION
V DESCRIPTION CLINIQUE

A) MODE DE DEBUT

B) PERIODE D'ETAT

1) Signes de deshydratation extracellulaire
 a) signes de deshydratation du comportement interstitiel
 b) signes de deshydratation du comportement vasculaire

2) Signes de deshydratation intra cellulaire

3) des troubles de l'équilibre electrolytiques et acidobasiques

4) Estimation des pertes ponderales.

VI EXAMENS BIOLOGIQUES

A) SANQUIN

B) URINAIRE

C) SELLES

VII EVOLUTION

- SPONTANEE

- SOUS TRAITEMENT

VIII TRAITEMENT DES DESHYDRATATIONS

A- INTRODUCTION

B- PRINCIPES GENERAUX DU TRAITEMENT
 - buts et moyens de traitement

C- ASPECTS PRATIQUES DU TRAITEMENT

1) Compensation des pertes
 a) estimation
 b) compensation
 - peros
 - parenterale

2) traitement à visée étiologique : traitement antiinfectieux

3) Modalités d'application
a) a domicile

b) dans les centres de soins de santé rural ou périphériques

c) en milieu hospitalier

D- Indices d'appréciation d'une rehydratation correcte.

E- LA SURVEILLANCE

IX PREVENTION DES DESHYDRATATIONS CAUSEES PAR LES DIARRHEES AIGUES INFECTIEUSES

A- PREVENTION SPECIFIQUE PORTANT SUR LE GERME

1- vaccinations

2- dépistage des porteurs sains et surveillance des convalescents

B- PREVENTION NON SPECIFIQUE

1- amélioration du pronostic

2- rupture du cycle diarrhée-malnutrition

3- assainissement, l'approvisionnement en eau et hygiène alimentaire.

X CONCLUSION

XI BIBLIOGRAPHIE
INTRODUCTION

Il y a quelques décennies les deshydratations causées par des diarrhées infectieuses étaient à l'ordre du jour dans les pays développés où encore de nos jours elles ne manquent pas d'attirer l'attention de temps en temps dans certains de ces pays.

Dans la plupart des pays en voie de développement et en particulier en Afrique Noire, elles demeurent encore un problème majeur de santé publique.

La diarrhée aiguë infectieuse est probablement la cause la plus courante de décès et certainement la cause principale de mortalité chez les enfants en bas âge. Dans 40 % des cas ou plus, ces décès qui sont dus à la deshydratation ou à la malnutrition chronique surviennent lors d'un épisode diarrhique aigu. La malnutrition est souvent déclenchée par une diarrhée aiguë et s'aggrave à chaque nouveau épisode diarrhique.

On pourrait penser que l'adulte vivant en Afrique Noire s'immunise progressivement contre les diverses agressions microbiennes parasitaires ou virales de son tube digestif. Cette assertion n'est nullement évidente et les services de clinique médicale qui soignent les adultes à Dakar et Abidjan et de leur région, voient défiler chaque année une foule d'individus atteints de diarrhée et le plus souvent avec un fond de deshydratation.

QUELQUES DONNÉES STATISTIQUES DE MORTALITÉ PAR DESHYDRATATION

Dans beaucoup de nos pays africains, les statistiques générales de morbidité et de mortalité sont souvent incomplètes. Elles donnent cependant de précieuses indications à l'évaluation de l'incidence de ces enteropathies.

Disons tout de suite que les conditions de travail de nos services hospitaliers et de nos laboratoires constamment sur chargés de besogne ne permettent pas un surcroît de travail dans l'élaboration de données statistiques.
Aussi on peut noter en Haute-Volta que la diarrhée a elle seule est responsable de 17,6 décès pour 100 décès de toutes causes en milieu rural avec un pic de 23,1 % entre 1 et 4 ans.

Pour l'ensemble du Benin (Dahomey) ces pourcentages sont 5,5 et 6

- En Côte d'Ivoire plus précisément à Abidjan, sur 1.179 malades enfants et adultes hospitalisés pour diarrhée aigue dans le service des maladies infectieuses (chu Abidjan) 8,2% des malades prés de 30 % présentaient des signes de deshydratation mis en évidence cliniquement (20)

- pour Bertrand les affections digestives arrivent au 3° rang des causes de morbidité.

Sur 207 cas soit 13,8 % des entrants se répartissent:
 - gastro-entérite 97
 - amibiase 37
 - colopathies chroniques 35
 - gastroduodénite 44

Ces malades représentent 3,16 % de l'ensemble des décès.

- Au Sénégal:

De l'ensemble des pays de l'Afrique de l'Ouest d'expression française, le Sénégal est l'un de ceux qui ont les meilleures statistiques sur les diarrhées infectieuses. L'enquête que nous présenterons nous permettra d'avoir une idée de la gravité du problème suivant les milieux (hospitaux, dispensaires, centres coutumiers et milieu rural et urbain).

- Statistiques hospitalières

- Services de Périatricie:
 Le Pr SENECAL (133 bis) en 1957-1958 donne les résultats suivants:

Hospitalisés: 3449
 - pour diarrhées : 578
 - avec diarrhée simple: 226
 - avec deshydratation 202 dont 61 % de mortalité.
En 1963, pour 2353 hospitalisés dans les 3 services de Pédiatrie de Dakar, il y a eu 605 avec ou sans deshydratation soit 29,7 % des entrants.

Les Professeurs:

- STAGET du 1.1.1964 au 31.12.1967 dans le service de Pédiatrie de l'Hopital de Datec de Dakar:
 sur 7044 entrées a dénombré 2833 nourrissons diarrhéiques soit 40,22 %
 La mortalité est énorme 25 à 40 % de décès selon l'état nutritionnel (127)

- GUERINEAU et BORIES (127) sur 2933 entrants dans le service de pédiatrie de l'hôpital principal de Dakar notent pour une classe sociale plus aisée que le pourcentage d'enfants hospitalisés pour affections diarrhéiques porté en diagnostic de sortie, est de 512 soit 27,68 % du nombre hospitalisé. Sur 390 décès du service, 43,07 % s'inscrivent dans le groupe des enfants présentant un syndrome de gastroentérite.

-Dans le service des maladies infectieuses à Dakar:

- ARMENGAUD (127) ne considérant que les diarrhées graves symptôme unique essentiel du tableau clinique motivant l'hospitalisation à l'exclusion des diarrhées accompagnant la plupart des maladies infectieuses, trouve que les diarrhées représentent 6 % des entrées 4,7 % de tous les décès avec une letalité de 8 %.

- Service d'adultes.

A Dakar les syndromes dysentériques et diarrhéiques affectent environ 8 % des adultes hospitalisés dans le service de Médecine interne, et nous savons que dans nos régions l’afrikan adult ne se présentent à l'hôpital pour une diarrhée qu'en cas d'épuisement.

- Centres de santé:

- centre de santé de protection maternelle et infantile urbaine fréquentés par 98450 enfants en 1968. On y a dénombré 42994 consultants pour diarrhées
(soit 43,67 %) dont 436 cas graves avec déshydratation (1,01 %) ayant exigé une hospitalisation d'urgence.

- centres de santé ruraux:

Au centre de santé KHOMBOLE un village du Sénégal, pendant une période d'observation d'un an sur 726 enfants consultant 151 ont été amenés pour diarrhée (soit 24,93 % des consultants) et devaient en mourir soit 2,2 % des enfants diarrhéiques.

- En milieu coutumier :

CANTERELLE (24) au cours d'une enquête en moyenne vallée du Sénégal, note que 1 à 5 ans la proportion des décès pour diarrhée excluant les diarrhées au cours de la rougeole représente 14 % de l'ensemble des décès de cet âge.

Récemment, dans une même rubrique tous les décès dont la diarrhée a été déclarée comme symptôme majeur de la maladie cet auteur situe la proportion de décès autour de 10 %. Le tableau ci-dessous résume les résultats de cette enquête en moyenne vallée du Sénégal en comparaison avec deux autres pays africains (106).
A. PIKINE.

La mortalité par diarrhée comparée à Pikiné et à Dakar centre (Sénégal) tableau ci-après.

Les diarrhées comptent parmi les causes les plus fréquentes de décès à Pikiné. Les statistiques d'Avril à Aout 1968 rapportent 41 décès par diarrhées à Pikiné sur un total de 197 décès soit 70,82 % dans le même temps à Dakar centre on note 95 décès par diarrhée sur un total de 666 décès soit 14,26 %.

La mortalité par diarrhée semble légèrement plus élevée en banlieue.

TABLEAU N° 2

MORTALITÉ PAR DIARRHÉE COMPAREE

A PIKINE ET A DAKAR - CENTRE (SENEGAL)

<table>
<thead>
<tr>
<th></th>
<th>Avril 1968</th>
<th>mai</th>
<th>juin</th>
<th>juillet</th>
<th>aout</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIKINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0 à 1 an</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>-1 à 4 ans</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-5 à 15 ans</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-adultes</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-total des décès</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>41</td>
</tr>
<tr>
<td>par diarrhée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-ensemble de</td>
<td>30</td>
<td>32</td>
<td>47</td>
<td>43</td>
<td>45</td>
<td>197</td>
</tr>
<tr>
<td>décès pour toutes causes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAKAR-CENTRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0 à 1 an</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1 à 4 ans</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-5 à 15 ans</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-adultes</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-total des décès</td>
<td>15</td>
<td>23</td>
<td>19</td>
<td>18</td>
<td>20</td>
<td>95</td>
</tr>
<tr>
<td>par diarrhée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-ensemble des</td>
<td>122</td>
<td>125</td>
<td>122</td>
<td>127</td>
<td>170</td>
<td>660</td>
</tr>
<tr>
<td>décès pour toutes causes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pendant les périodes d'épidémie de choléra, le nombre des déshydratations causées par les diarrhées infectieuses augmentent dans les pays concernés.

Une enquête effectuée au Bénin plus précisément à Cotonou montre que:
- la déshydratation était majeure dans 59 % des cas
- sévère dans 11 % des cas
- non encore extériorisée dans 30 % des cas; à noter qu'au cours de l'interrogatoire le critère de soif n'a pas été notifié.
RESPONSABILITÉ DES DIFFÉRENTS GERMS ISOLES À LA
COPROCULTURE AU COURS DES DIARRHÉES AIGUES INFECTIEUSES.

A - BACTERIES

Rôle pathogène du vibrión cholérique

Après avoir pris une vigueur et une extension nouvelle dans les foyers traditionnels, il s'est attaqué pour la première fois en 1970 au continent africain neuf et non protégé.

En Afrique l'épidémie a progressé de façon inattendue selon trois axes:

- au Nord à partir de l'Égypte, elle atteint la Libye puis la Tunisie, enfin le Maroc méditérranéen, l'Algérie n'étant pas épargnée le magreb est devenu zone endo-épidémique.

- à l'est à partir de l'Égypte ou des Somalies, elle s'étend en Ethiopie (foyer important) au Soudan, au Kenya, en Ouganda, au Rwanda et en Tanzanie.

TABLEAU N° 6

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGOLA</td>
<td></td>
<td>189</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>BENIN</td>
<td>1486</td>
<td>176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAMEROUM</td>
<td>1349</td>
<td>264</td>
<td>117</td>
<td>135</td>
</tr>
<tr>
<td>COMORE</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>COTE D'IVOIRE</td>
<td>565</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TERRITOIRE DES</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHANA</td>
<td>10407</td>
<td>350</td>
<td>138</td>
<td>2</td>
</tr>
<tr>
<td>KENYA</td>
<td>25</td>
<td>51</td>
<td></td>
<td>1359</td>
</tr>
<tr>
<td>LIBERIA</td>
<td>606</td>
<td>826</td>
<td>232</td>
<td>646</td>
</tr>
<tr>
<td>MALAWI</td>
<td></td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>MALI</td>
<td>1613</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MAURITANIE</td>
<td></td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIGER</td>
<td>5634</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIGERIA</td>
<td>5489</td>
<td>1474</td>
<td>190</td>
<td>34 (3mois)</td>
</tr>
<tr>
<td>SENEGAL</td>
<td></td>
<td>748</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>SIERRA LEONE</td>
<td>159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOMALIE</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOGO</td>
<td>297</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAUTE VOLTA</td>
<td>674</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCHAD</td>
<td>19</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBRE TOTAL DE CAS</td>
<td>28419</td>
<td>3460</td>
<td>1457</td>
<td>2565</td>
</tr>
<tr>
<td>NBRE DE PAYS AYANT NOTIFIE DES CAS</td>
<td>15</td>
<td>12</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>
En 1977 au 10 mai, sept pays d'Afrique avaient notifié des cas de choléra. Il n'y a eu aucune progression de la pandémie actuelle depuis plus de deux ans et le fléchissement noté à partir de 1975 s'est poursuivi.
2- Les Salmonelles:

Dans les syndromes intestinaux, mis à part les manifestations d'une intoxication alimentaire collective, les Professeurs PAYLET et SANKALE (127) à Dakar, ont eu la surprise de constater que le pourcentage de diarrhées que l'on pouvait rattacher aux Salmonelles était faible.

Dans les 107 témoins 4,18 % des enfants non malades en étaient porteurs, chiffre comparable à celui noté dans le groupe des enfants diarrhéiques 4,73 %.

LAPAIX (85) au sujet d'une épidémie hospitalière à Stanleyville note que cette salmonelle peut rester inapparente ou déterminer les entérites parfois graves. Mais pour 34 malades, 4 fois seulement la diarrhée était isolée et représentait le motif de l'hospitalisation. Le plus souvent cette diarrhée survient au cours ou au décours d'une rougeole.

A Bobo-Dioulasso (Hte Volta) au cours de l'année 1976, des investigations ont été entreprises par la section biologique du centre MURAZ et le laboratoire de l'hôpital de cette ville pour tenter de préciser l'étiologie des syndromes dysentériques et diarrhéiques rencontrés si souvent en pratique courante.

Ainsi du 1er janvier au 31 décembre 1966 (Aicosse J.H. et Collab 123)

- 221 coprocultures ont été effectuées au centre MURAZ
- 234 coprocultures sont faites à l'hôpital

au total 455 coprocultures. Ces examens ont fourni les résultats suivants:

- au centre RAMVZ sur 221 coprocultures
 119 positivités (soit 53,85 %)
 102 négativité soit 46,15 %

- à l'hôpital on a noté sur 234 coprocultures
 76 positivité (soit 32,50 %)
 138 négativité (soit 67,50 %)
- soit au total 195 coprocultures positives sur 455 soit 52,85 %.

- A Douala (Cameroun) dans un service de médecine de l'hôpital au cours de l'année 1962 sur 392 malades porteurs de syndromes diarrhéiques dysentériques 121 ont eu des coprocultures positives soit 30,86 % (44)

TABLEAU N° 3

ENTEROBACTERIES ISOLEES PAR COPROCULTURES

<table>
<thead>
<tr>
<th>Germes isolés à la coproculture</th>
<th>Centre MURAZ</th>
<th>HOPITAL</th>
<th>TOTAL</th>
</tr>
</thead>
</table>
| **Shigella**
(Sh. Dysenterise)
(E. de SMIGA)
(Sh. Flexneri)
(Sh. Sonnei)
Para-Shigella | 5 7 7 | 13 2 21 | 6 3 | 38 9 20 |
| **Alcalascens-Dispar** | 6 | 4 | 10 |
| **Escherichia coli**
G.E.I. | 0.26 B.6 : 2) 0.125 B15 : 2) 0.126 B6 : 1)9 0.127 B8 : 3) 0.128 B12 : 1) | 0.55 B5 | 1 | 10 |
| **Samonella**
(EBerth)
(Groupes rares) | 3 | 3 | 6 |
| **Arizona** | 1 | 1 |
| **Citrobacter** | 5 | 5 |
| **Aeromonas hydrophilia** | 1 | 1 |
| **Klebsiella** | 5 | 5 |
| **Aerobacter Clavae** | 5 | 5 |
| **Proteus**
(mirabilis)
(vulgaris)
(morgani)
(Providencia) | 18 1 | 10 3 | 32 |
de 1968 à 1969 dans l'enquête signalée plus haut 377 coprocultures ont été réalisées et 139 souches de salmonelles ont été isolées et représentent 4,1% de l'ensemble des coprocultures effectuées et 35,2% des coprocultures positives. Les salmonelles occupent ainsi la 2ème place des entérobactéries pathogènes isolées par coproculture à Abidjan.

Du 1er juin 1971 au 31 décembre 1973, une nouvelle enquête effectuée par A. BOURGEADE et COLL (12) a montré que parmi 1146 malades présentant un état diarrhéique outre le choléra 679 coprocultures ont permis d'isoler un germe parmi lesquelles 33 salmonelles. Les salmonelles occupent encore la 2ème place des entérobactéries pathogènes isolées par coprocultures à ABIDJAN.
<table>
<thead>
<tr>
<th>Groupe</th>
<th>Salmonelles para typhi A:</th>
<th>Groupe para typhi B:</th>
<th>Salmonelles para typhi murium:</th>
<th>Serotypes non précisés:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupe A</td>
<td>1</td>
<td>Groupe B</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Groupe C</td>
<td>3</td>
<td>Groupe D</td>
<td>salmonelles typhi:</td>
<td>6</td>
</tr>
<tr>
<td>Groupe D</td>
<td>serotypes non précisés:</td>
<td>6</td>
<td>salmonelles borbeck:</td>
<td>1</td>
</tr>
<tr>
<td>Groupe E</td>
<td>1</td>
<td>Groupe E</td>
<td>salmonelles kikima:</td>
<td>1</td>
</tr>
<tr>
<td>Groupe E</td>
<td>serotypes non précises:</td>
<td>1</td>
<td>salmonelles urbana:</td>
<td>2</td>
</tr>
<tr>
<td>Groupe O</td>
<td>salmonelles adelaide:</td>
<td>1</td>
<td>salmonelles non précisés:</td>
<td>1</td>
</tr>
<tr>
<td>Groupe 63</td>
<td></td>
<td></td>
<td>TOTAL:</td>
<td>33</td>
</tr>
</tbody>
</table>

TABLEAU N° 4
Au SENEGAL :

L'importance des salmonelles dans la pathologie infectieuse sénégalaise a été soulignée par plusieurs auteurs :

- DARASSE et COLL (36) 1954-1956
- KIRSCHE et BAYLET (82) en 1956-1958
- BORIES (18) en 1961-1963
- Les 4e journées médicales de DAKAR en 1964 mettent en évidence l'endémie des salmonelles au Sénégal. La fréquence d'isolement de ces germes jointe à la fréquence des shigelloses a justifié la création d'un centre salmonella-shigella au Sénégal où sont étudiées des souches isolées.

Une enquête réalisée de novembre 1964 à mars 1966 dans 3 centres coutumiers dans la zone arrachidière serère du Sénégal intéressa 737 individus. 541 d'entre eux firent l'objet d'un unique prélèvement. 196 de plusieurs prélèvements. Au total 989 coprocultures furent effectuées, rapportées à la totalité des coprocultures on relève le taux de positivité pour salmonella 4,14%.

D'une façon générale, l'endémie à Salmonella est permanente au Sénégal avec une recrudescence pendant la saison des pluies.

Au ZAIRE:

En 1959, au KIVU G. VAN ROS (47) pour 216 selles de patient souffrant de troubles intestinaux sur un total de 1690 selles adressées au laboratoire avait isolé 59 salmonelles soit 3,5%.

En 1973 pour A. MAKULU (94) les salmonélies représentent 6,1% des étiologies de diarrhée étudiées.
3) **Le Rôle pathogène des Shigelles**

Le rôle pathogène des shigelles est indispensable dans les diarrhées tropicales.

- **A. DAKAR** les shigelles sont à l'origine de la majorité des syndromes dysentériques observés. Ce fait est maintenant bien prouvé par divers travaux.

<table>
<thead>
<tr>
<th>Années</th>
<th>Auteurs</th>
<th>Nombre de souches isolées</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954-1956</td>
<td>DARASSE</td>
<td>302</td>
</tr>
<tr>
<td>1956-1958</td>
<td>BAYLET</td>
<td>667</td>
</tr>
<tr>
<td>1961-1963</td>
<td>BORIES</td>
<td>285</td>
</tr>
<tr>
<td>1964</td>
<td>LE NOC</td>
<td>278</td>
</tr>
<tr>
<td>1965</td>
<td>CENTRE NATIONAL DES ENTÉROBACTÉRIES AU SENEGAL</td>
<td>106</td>
</tr>
<tr>
<td>1966</td>
<td></td>
<td>101</td>
</tr>
</tbody>
</table>

(tiré de la thèse de G. OUSSA (106))

TABLEAU N° 5

Dans les centres de santé urbains le professeur BAYLET étudiant une série de 1441 selles de sujets présentant des troubles entéritiques, note:

- selles glairo-sanglante 219 77% 4,7% 6%
- selles à macrophages non glairo}sanglante 225 11%
- selles diarrhéiques pâteuses : 5 0,2%

Les shigelloses se rencontrent à Dakar tout le long de l'année avec cependant une nette recrudescence au cours du second semestre, la plupart des observations s'accordent sur cette recrudescence durant les mois pluvieux et chaud d'hivernage (août-septembre-octobre) comme le montre l'histogramme ci-après (106)
Répartition des chigelloses
au cours de l'année 1964 à Daliar

Nombre de cas

Zones hacurées :
Amibiasse

% de positivité (par rapport au nombre de coprocultures)
Le trait dominant de l'épidémiologie des dysenteries bacillaires c'est sur un fond d'endémie permanente l'apparition de cette recrudescence saisonnière. Les épidémies sont exceptionnelles. Lorsqu'elles éclorment, elles restent très localisées dans l'entourage d'un disséminateur, les recrudescences saisonnières faisant figure de fausses épidémies sont dues en réalité à l'intervention de serotypes différents.

La persistance de l'intensité de l'endémie s'explique par la richesse des porteurs sains (estimés à 3 %) de la population globale (10).

A. BOBO DIOULOSSO (Hte Volta) revenant sur le tableau des enterobactéries isolées par coproculture en 1966, on note une relative prédominance des shigelles:

(shigella et para - shigella) qui représentent 36,5 % du total des souches isolées.

Sur 53 souches (identifiées au Laboratoire de Préférence de Shigella à l'Institut Pasteur de Paris) ils ont noté:

- 6 sh. dysenteriae (Bacille de shiga)
- 36 sh. flexneri
- 9 sh. souneri

On remarque donc la fréquence nettement plus importante de shigella flexneri qui représente près de 72 % des souches locales, la présence d'un certain nombre de shigella dysenteriae ?, la rareté de sh Souneri et l'absence de sh. boydi.

Ils rapportent que ces observations sont conformes à celles de plusieurs auteurs qui ont étudié les shigellose en Afrique noire.

- BRUMPT et COLL (23) en 1955 dans la 1ère étude pratiquée à Bobo Dioulosso sur 76 souches notait une répartition à peu près identique.
- RAVISSE et COLL (120) en Afrique équatoriale signalent 69 coprocultures positives sur 476 examens pratiqués (35,52%) et insistent sur la prédominance des shigella qui représentent environ 50 % des souches étudiées.
- Leurs résultats peuvent être rapprochés de ceux de VAUDEPITTE et GATTI, DARASSE et COLL qui mentionnent également la prédominance de Shigella flexneri dans une étude portant en partie sur les souches provenant de Bobo-Dioulosso.
Dans d'autres régions d'Afrique certains auteurs observent une répartition différente des groupes.
SERIE et COLL (134) signalent un aspect très spécial des shigelloses en Ethiopie. Sh. flexneri représentent 49 % des souches isolées tandis que sh. boydi est retrouvé dans 23 % des cas.

En CÔTE D'IVOIRE:
- de 1968-1969 au cours de l'enquête effectuée par LE NOC et COLL sur 377 coprocultures positives, on retrouve 240 souches de shigella représentant 63,6 % des coprocultures positives occupant bien nettement la 1ère place des germes en causes dans les diarrhées infectieuses.
- du 1er juin 1971 au 31 décembre 1973, l'enquête effectuée par BOURGEADE et COLL (20) révèle une présence de shigella dans 65 observations alors qu'on avait signalé 33 observations de salmonelle ce qui confirme toujours la nette prédominance de Shigella au cours de diarrhée en Afrique Noire.

Les 65 shigelles isolées se répartissent en différents groupes représentés dans le tableau suivant:

<table>
<thead>
<tr>
<th>GROUPE</th>
<th>NOMBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>- S/G A. (shigella dysenterie)</td>
<td>7</td>
</tr>
<tr>
<td>- S/G B. (shigella flexneri)</td>
<td>44</td>
</tr>
<tr>
<td>- S/G C. (shigella boydii)</td>
<td>12</td>
</tr>
<tr>
<td>- S/G D. (shigella souneri)</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>65</td>
</tr>
</tbody>
</table>

TABLEAU N° 6

On remarque que S/G B. représente 67 % de ce groupe d'enterobacterie, cette prédominance de shigella flexneri est habituelle en AFRIQUE NOIRE tropicale.
Au ZAIRE:

La fréquence des shigelles dans l'étiologie des diarrhées étudiées au ZAIRE en 1973 est de 6,2 %. (29).

4) **Rôle étiologique des colibacilles**

La pathogénicité de ces germes est admise mais leur responsabilité dans les phénomènes digestifs ne peut être affirmée qu'avec certaines réserves. Cette responsabilité serait retenue dans les cas aigus où la flore microbienne est en prédominance gram négatif et où aucun autre germe ni parasite n'est retrouvé.

Mais comme le souligne KYELEM (83) dans le cas de diarrhée évoluant sur le mode chronique à flore polymorphe ou en présence de parasite, l'étiologie est difficile à affirmer.

D'autre part, si le fait d'isoler un colibacille pathogène connu ne donne pas forcément la clé du diagnostic étiologique, inversement le fait d'isoler en culture pure un colibacile non typable ne permet pas de refuser à ce dernier un réel pouvoir pathogène, il est probable qu'il existe en Afrique des souches autochtones de colibacilles pathogènes non encore déterminés.

- A BOBO DIOULOSSO (Hite Volta) d'après les travaux de J.H. RICOSSE et COLL (123) _Escherichia Coli_ fut identifié en 10 souches dans des syndromes diarrhéiques ou dysentériques dont une fois chez l'adulte il s'agirait de 0 127 _B_9. Ce cas a été observé chez un médecin et les auteurs pensent que ce cas explique peut être l'origine de la contamination. Ils font remarquer que leur sondage porte sur un nombre assez faible d'examens. Il est probable que le rôle de ces germes dans la pathologie infectieuse intestinale locale est beaucoup plus important que ces chiffres ne le laisseraient supposer.
Au Sénégal:

DARASSE et COLL (16) étudiant les premiers en 1954 et en 1957 l'incidence de E. Coli dans les gastro-entérites de l'enfant à Dakar, consacrent ensuite de nombreux travaux aux diarrhées infantiles en milieu africains et soulignent leur fréquence.

BORIES en 1961-1963 en isole 30 souches

KYELEM (23) dans sa thèse inaugurale (1967) inspiré par le Pr BAYLET, étudie la place des colibacilles pathogènes dans les diarrhées infantiles d'un service hospitalier.

E. Coli 055 B5 est le plus répandu à Dakar. On le retrouve dans des épidémies de crèche (comme celle rapportée par H. DARASSE et COLL (35) à la maternité africaine de Dakar.

En milieu hospitalier BORIES et COLL sur une série de 750 cas de gastro-entérite infantile hospitalisés en 2 ans (1961-1962) à Dakar, trouvent une étiologie bactérienne dans 24,25 % dont 3,7 % pour E. Coli représentant dans la même série 20,45 % des coprocultures positives (127).

5 - Autres enterobactéries:

D'autres enterobactéries sont assez fréquemment isolées au cours d'épisode diarrhéique de brève ou longue durée, il n'est pas facile de dire s'ils sont témoins ou responsables de ces maladies intestinales.

Chez l'adulte ce sont surtout: Proteus Rehgeri et Proteus hauseri.

Chez l'enfant: Klebsiella pneumoniae
Proteus Morganie
Providencia.

A propos de Providencia, dans l'enquête signalée plus haut et effectuée par J.M. AICOSSE et COLL (123) on notera l'extrême rareté de Providencia alors que ce germe a été rencontré fréquemment dans les entéro-pathies, en Afrique tropicale.
La fréquence de ces germes ressort mal des statistiques administratives et il est normal qu'en absence de bactérie on s'attache à rechercher une étiologie virale ou parasitaire.

Au CAMEROUUM:

Dans le service de médecine de l'hôpital de Douala, des 30,86 % coprocultures positives en 1962, 26 germes ont été isolés et Providencia arrive nettement en tête, isolés 60 fois c'est à dire chez 15,30 % des malades observés. Les souches de Providencia représentent ainsi 44,1 % des souches microbiennes.

Au ZAIRE au KIVU:

G. VAN ROS (I39) rapportait des souches de Providencia dans 12,8 % de coprocultures (isolé de 216 selles de patients souffrant de troubles intestinaux sur un total de 1690 selles adressées au laboratoire).

Ces diverses bactéries ne se rapportent qu'à 20 à 40 % des coprocultures comme le montrent les différentes statistiques que nous avons rapportées dans les pages précédentes et que nous regroupons ici-dessous:

- LE NOC et ORIO à Abidjan (C I) 11,6 %
- DUCLOUX et PAUCOU à Douala (Cameroum) 30,86 %
- RICOSSE et COLL à Bobo-Dioulosso (Hîte Voîta) 42,85 %
- BORRIES et COLL à Dakar (Sénégal) 24,25 %
- BAYLET (Pikiné) (Sénégal) 44,57 %

Il demeure donc qu'approximativement 60 à 80 % des observations restent de coproculture négative mais il faut noter que la coproculture n'est pas de pratique courante dans les dispensaires et centres de santé. Elle est même irréalisable en milieu rural et en milieu hospitalier, de la minutie apportée dans la technique du personnel dépendant de grandes variations de positivité.

La fréquence de ces germes ressort mal des statistiques administratives et il est normal qu'en absence de bactérie on s'attache à rechercher une étiologie virale ou parasitaire.
B - ROLE DES VIRUS :

En Afrique, quelques rares enquêtes ont été effectuées ici et là. Ces enquêtes ne se réfèrent pas à des groupes spécifiques de malades diarrhéiques, mais ont été effectuées dans des populations globales. A défaut de chiffrer le pourcentage des enterovirus, dans les affections diarrhéiques prises en particulier, ces enquêtes nous permettent d'apprécier la circulation enterovirale dans ces populations avec pour corollaire son incidence éventuelle dans la pathologie diarrhéique locale.

VAUDEPITTE étudiant 1222 enfants congolais présumés sains de moins de 2 ans, souligne également l'importance de l'endémie enterovirale en isolant:

- 25 polio I
- 17 polio II
- 55 polio III
- 118 coxa A
- 57 cox B
- 31 echo certains
- 62 echo probables

Au SÉNEGAL:

Une enquête réalisée par Pr BAYLET dans la région de THIES, intéressant 425 sujets donne les résultats suivants:

<table>
<thead>
<tr>
<th>age</th>
<th>nombre</th>
<th>négatif</th>
<th>isolement d'enterovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>~ de 5 ans</td>
<td>136</td>
<td>112</td>
<td>14</td>
</tr>
<tr>
<td>5 à 10 ans</td>
<td>204</td>
<td>174</td>
<td>11</td>
</tr>
<tr>
<td>+ de 10 ans</td>
<td>85</td>
<td>78</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>425</td>
<td>364</td>
<td>27</td>
</tr>
</tbody>
</table>

TABLEAU N° 7
Ainsi près de 15 % des selles étaient susceptibles de diffuser dès leur émission des enterovirus dont la poussée pathogène est actuellement largement démontrée.

A DAKAR le Pr BAYLET II,12,13) isole les enterovirus chez 15,25 % des diarrhéiques et 14,35 % de selles normales (397 diarrhéiques et 375 selles normales).

<table>
<thead>
<tr>
<th>Selles</th>
<th>diarrhéiques</th>
<th>normales</th>
</tr>
</thead>
<tbody>
<tr>
<td>nombre</td>
<td>397</td>
<td>375</td>
</tr>
<tr>
<td>Poliovirus</td>
<td>3,4</td>
<td>4,26</td>
</tr>
<tr>
<td>Coxsakies</td>
<td>3,6</td>
<td>1,6</td>
</tr>
<tr>
<td>Echo</td>
<td>6,2</td>
<td>8,15</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15,25</td>
<td>14,25</td>
</tr>
</tbody>
</table>

TABLEAU N° 8

Deux enquêtes celles de PATTYN S.R et DELVILLE J.P. (37) et celle de VAUDEPITTE (140) résument nos connaissances sur:
- la notion d'infection infraclinique
- le rôle favorisant d'une hygiène défectueuse.

PATTYN et DELVILLE détectent dans les selles de 1289 enfants sains de 0 à 3 ans.
- 22 poliovirus soit 1,7 %
- 292 coxvirus (206 A et 86 B) 22 %
- 18 echovirus 1,4 %

isolant de plus de 455 virus non identifiés dont un grand nombre paraît se ranger parmi les echovirus.

Une étude longitudinale de la flore virale entérique chez un groupe de 22 enfants d'un camp minier confirme l'extrême dispersion des enterovirus et la précocité des polyinfections.
Cette incidence saisonnière à Yaoundé ne semble pas corroborer celle de l'enquête d'Elisabethville où le maximum d'isolement s'étaisait dans la saison sèche. Ces mêmes auteurs ont étudié le taux de positivité des selles en fonction de l'âge, et on remarque que le taux de positivité augmente avec l'âge. Voir courbe suivante.

Au cours d'une quête virologique et serologique dans la population infantile de Yaoundé sur la poliomyélite au Cameroun, entre juillet 1969 et juin 1970, R. BOCHE J. MILLAN et D. NOC (15) ont apprécié plusieurs paramètres dont le portage d'enterovirus dans la population globale, le portage par tranche d'âge entre 0 mois et 6 ans, et le nombre de souches isolées avec le pourcentage de porteurs d'enterovirus. Ces auteurs ont établi la courbe ci-après.

Cette courbe étudie les variations mensuelles du pourcentage de porteurs d'enterovirus dans l'ensemble de la population infantile de l'enquête.

Elle montre que les enterovirus sont isolés tout le long de l'année avec des recrudescences saisonnières. On note en effet un pic marqué en septembre (grande saison des pluies) et un second pic étalé en avril-mai (petite saison des pluies). Par contre, la période d'excrétion minimum des enterovirus est la période de novembre à mars qui correspond à la saison sèche.

Cette incidence saisonnière à Yaoundé ne semble pas corroborer celle de l'enquête d'Elisabethville où le maximum d'isolement s'étaisait dans la saison sèche.

Cherchant à cerner les questions de plus près R. BOCHE et COLL (15) ont sondé le portage des enterovirus par âge (entre 0 mois et 6 ans) et par mois (courbe).
Diagramme n°

Nombre de selles examinées

Virus ?
Adéno
Coxsakie B
EC O
Coxsakie A
Polio

1958-59
pluies < saison sèche > pluies

1960
% de positivité des selles

1958-1959

pluies < saison sèche > pluies

Age en Mois
PORTAGE DES ENTEROVIRUS DANS LA POPULATION GLOBALE
à YAOUNDE (CAMEROUN) 1969 - 1970

Diagramme montrant la distribution des portages des enterovirus non polio et polio virus dans la population globale de Yaoundé (Cameroon) de 1969 à 1970. Les variations saisonnières sont également indiquées avec des saisons de grande pluie, saison sèche et petite saison de pluie.
PORTAGE DES ENTEROVIRUS PAR ÂGE ET PAR MOIS DANS UNE POPULATION INFANTILE À YAOUNDE (CAMEROUN) 1969 - 1970

nombre d'enterovirus isolés

0 - 18 mois
18 mois-3 ans
3 à 6 ans

mois

juil août sept oct nov déc jan fév mars avr mai juin
Durant la période de l'enquête il a noté dans la population infantile d'Yaoundé une circulation importante d'enterovirus puisque le taux d'excrétion virale trouvé est de 38,7 %. Ce chiffre varie peu suivant les tranches d'âge examinées.

La circulation des enterovirus non poliomyélitiques est surtout marquée jusqu'à l'âge de 3 ans, 30 % de porteurs, puis tend à diminuer au-delà de cet âge, 22 %, alors que celles des poliovirus reste relativement stable dans les trois groupes d'âge avec un pourcentage de porteurs oscillant entre 8 à 12 % (tableau).

Si les enterovirus sont isolés à longueur d'année il existe cependant une recrudescence de leur portage au moment des pluies. Au cours de la saison sèche ou le taux d'excrétion est plus modéré on peut observer un phénomène d'antagonisme entre extraction des poliovirus et celle des enterovirus non poliomyélitiques, avec des recrudescences passagères du portage des poliovirus (l'isolement du poliovirus type I a été le plus fréquent au cours de cette enquête.
<table>
<thead>
<tr>
<th>Âge</th>
<th>Nombre de prélèvements</th>
<th>Nombre isolement</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-18 mois</td>
<td>225</td>
<td>101</td>
<td>39,6</td>
</tr>
<tr>
<td>18 mois</td>
<td>136</td>
<td>54</td>
<td>39,7</td>
</tr>
<tr>
<td>3 ans</td>
<td>133</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td>TOTAL</td>
<td>524</td>
<td>203</td>
<td></td>
</tr>
</tbody>
</table>

Nombre de souches isolées et % de porteurs d'enterovirus non poliomyélitiques et de poliovirus par tranches d'âge.

Sur 524 examens pratiqués il y a eu 203 isolements d'enterovirus (soit 38,7 % de positivité dont 147 souches d'enterovirus non poliomyélitiques (28 %) et 56 souches poliovirus (10,7 %).

Ce tableau confirme que l'excrétion des enterovirus est pratiquement identique dans les trois tranches d'âge de cette enquête. Mais parmi ces enterovirus le rapport poliovirus sur enterovirus non poliomyélitiques se modifie en fonction de l'âge 1/3 jusqu'à 18 mois, 1/4 jusqu'à 3 ans. Il s'élève à 1/2 dans la tranche de 3 à 6 ans. Le taux d'excrétion des enterovirus non poliomyélitiques est souvent élevé dans la population infantile de moins de 3 ans.

De toutes ces enquêtes on peut conclure que pour établir la preuve de l'existence des diarrhées à virus on se heurte d'emblée à d'importantes difficultés.
C'est d'abord le nombre de sujets apparemment sains qui excrètent des virus. La grande multiplicité des virus isolés au cours de chaque enquête, et surtout la fréquente association bactéries et virus.

En général on ne pense à une étiologie virale que si la cause bactérienne n'est pas prouvée.

A l'issue de cette recherche étiologique des diarrhées infectieuses, nous pouvons retenir que les coprocultures positives représentent 20 à 40 % (30 % en moyenne) de l'ensemble des coprocultures.

Dans ce lot des coprocultures positives, les enterobactéries constituent le groupe largement dominant dans lequel le rôle des shigelles est indiscutable (elles sont responsables de 15 % des cas de diarrhée). Le pouvoir pathogène de protéus morganii et de proteus rettgeri ne fait aucun doute non plus. Le pourcentage de diarrhées que l'on peut rattacher aux salmonelles est faible. La pathogénicité des colibacilles est admise, mais leur responsabilité dans les syndromes intestinaux ne peut être affirmée qu'avec certaines réserves en dehors des collectivités infantiles hospitalières (maternité, crèches etc...) Il en est de même d'autres enterobactéries tels que Citobacter et Providencia.

Le rôle du staphylocoque ne semble pas déterminant sauf dans les cas sporadiques de toxique-infection alimentaire aigue. Parmi les parasitoses intestinales l'ambiase, en dehors de la dysenterie classique peut revêtir la forme diarrhéique simple et donner le change avec une dysenterie bacillaire; elle reste néanmoins cinq fois moins fréquente que les shigelloses. Éven que les autres parasites intestinaux soient fréquents (en particulier chez l'enfant) En Afrique:

(surtout les Helminthes) leur rôle ne peut être affirmé qu'après élimination de toute autre cause microbienne possible. La responsabilité des entérovirus au cours des syndromes diarrhéiques est secondaire par rapport à celui des bactéries enteropathogènes. L'hypothèse en est émise et très discutée pour expliquer les 60 à 80 % (70 % en moyenne) coprocultures bactériennes-négatives.
C - ROLE DES PARASITES INTESTINAUX :

Les parasitoses intestinales affectent aussi bien l'adulte que l'enfant; mais leur importance est surtout remarquable dans la pathologie de l'enfant et varie selon les pays et dans un même pays selon les régions.

Si les parasites intestinaux sont souvent à l'origine de troubles nutritionnels, d'anémie ou une oesinophilie sanguine, très peu entraînent des diarrhées et en particulier des diarrhées pouvant conduire à des troubles hydro-electrolytiques.

Mais une attention très particulière est à retenir pour l'amibiase colique maligne, pour l'état de choc qu'elle entraîne.

L'état de choc est en effet fréquemment observé chez le malade porteur d'une amibiase colique sévère; d'abord simple conséquence d'une diarrhée, plus ou moins prolongée, ce choc est facile à corriger. Mais lorsqu'il s'associe à des dégâts anatomiques plus importants, des phénomènes toxiques interviennent, souvent accompagnés de complications septiques, particulièrement redoutables sur ces terrains fragilisés.

L'entité nosologique que constitue l'amibiase colique maligne a été nettement individualisée par l'école de Dakar.

- Déjà en 1975 PAYET M. et COLL (107) rapportent les 10 premières observations de l'Ouest Africain.
- En 1962, sur une série de 153 malades atteints de l'amibiase aigue en milieu hospitalier, M. ARMENGAUD et COLL (4) dénombrent 22 cas d'amibiase gravissime dont 12 suivis de décès, soit respectivement 14,3 % et 7,8 % des cas.
- En 1964 sur un groupe de 173 formes coliques suivies dans le service de médecine générale PAYLET M. SANKALE M. et FRAMENT V. (109) ont trouvé 15 formes malignes soit 8,6 % des amibiases maladies.

- En 1968, ces mêmes auteurs dénombrent 61 cas de formes malignes de l'amibiase colique.

- De 1964 à 1974 QUENON ANDIAYE P.D. BAYO S. (119) signalent 92 cas d'amibiase colique maligne ayant frappés des enfants et des adultes.

Ces auteurs ayant passé en revue les documents anatomopathologiques, necopsiques des laboratoires du centre hospito-universitaire de Dakar élaborent une répartition par sexe et par service, une répartition annuelle des cas et l'incidence de l'âge et du sexe.

<table>
<thead>
<tr>
<th>SERVICES</th>
<th>Nombre de cas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Masculin</td>
</tr>
<tr>
<td>clinique médicale</td>
<td>25</td>
</tr>
<tr>
<td>clinique pédiatrique</td>
<td>15</td>
</tr>
<tr>
<td>clinique chirurgicale</td>
<td>6</td>
</tr>
<tr>
<td>maladie infectieuse</td>
<td>6</td>
</tr>
<tr>
<td>clinique obstetricale</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>52</td>
</tr>
</tbody>
</table>

TABLEAU N° 9

Repartition des cas par sexe et par service.

Ce tableau permet les remarques suivantes:

1) les plus grands nombres de cas sont trouvés en clinique médicale et pédiatrique qui totalisent respectivement près de 50 % et 30 % des cas.
2) La clinique obstétricale semble présenter le moins de cas. Cela s'explique facilement par le fait que de nombreuses malades sont transférées en clinique médicale aussitôt après l'accouchement ou la fausse couche. L'état gravidique a pu constituer un facteur aggravant.

3) L'importance de l'atteinte de la population enfantine est évidente. Cependant l'atteinte réelle des enfants dépasse le nombre qui est exposé sur le tableau.

En effet, pour des raisons diverses quelques enfants sont reçus dans des services autres que pédiatriques. Cela souvent du fait que l'état nutritionnel des enfants, les associations morbides - paludisme, autres maladies infectieuses- constituent sans aucun doute des facteurs aggravants.

<table>
<thead>
<tr>
<th>ANNÉE</th>
<th>ENFANTS</th>
<th>ADULTES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1964</td>
<td>7</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>1965</td>
<td>7</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>1966</td>
<td>4</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>1967</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>1968</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1969</td>
<td>4</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>1970</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1971</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1972</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1973</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1974</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>33</td>
<td>59</td>
<td>92</td>
</tr>
</tbody>
</table>

Dans ce tableau (10) de répartition annuelle des cas, ces auteurs distinguent la population enfantine (entre 0 et 14 ans) et la population adulte (à partir de 15 ans)
La répartition annuelle montre ainsi de grandes variations d'une année à l'autre, avec une tendance plus ou moins nette à la décroissance des cas pendant les quatre dernières années (1971-1974). Le plus grand nombre de cas se situe aux premières années (1964-1974). La tendance à la régression est sans doute en rapport avec l'amélioration des conditions d'hygiène dans la population.

En ce qui concerne les données cliniques ces mêmes auteurs rapportent que le syndrome diarrhéique est rencontré dans 81 % des cas et constitue donc un élément constant. Il s'agit de diarrhée profuse ou d'une diarrhée dysentérique, sanguinolente, glaireuse, fétide, qui contribue à épuiser le malade.

La forme entéro-colitique aigue, ou intolérance gastrique et dehydratation, sont les éléments dominants. Les amibes hematophages ont été retrouvés dans 30 % des cas avec un examen coprologique minutieux.

- En 1978 BOURDAIS et COLL (18) ont présenté 13 cas d'amibiase colique nécrosante admis à l'hôpital principal de Dakar en état de choc. L'âge de ces malades s'étale de 9 à 77 ans, il s'agit de 10 femmes (dont 6 dans un contexte post partum ou post abortum), de 2 hommes et d'un enfant de 9 ans. L'ensemble des constatations cliniques anatomiques et évolutives chez ces malades se trouve résumé dans le tableau ci-après;

l'examen parasitologique des selles a confirmé la responsabilité de l'amibe hematophage des différents cas.
<table>
<thead>
<tr>
<th>CAS NUMÉRO</th>
<th>ÂGE</th>
<th>SYMPTÔMES CLINIQUES</th>
<th>LÉSIONS ANATOMIQUES</th>
<th>TRAITEMENT</th>
<th>ÉVOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22 ans</td>
<td>Syndrome dysentérique</td>
<td>Nécrose de tout le côlon</td>
<td>Iléostomie</td>
<td>Guérison</td>
</tr>
<tr>
<td></td>
<td></td>
<td>enceinte incontinence</td>
<td>+ recto-sphinctérienne</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>37 ans</td>
<td>Syndrome dysentérique</td>
<td>Nécrose du côlon</td>
<td>Iléostomie</td>
<td>Septicémie à Salomon décès au 2e jour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé extérieur</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40 ans</td>
<td>Syndrome dysentérique</td>
<td>Côlon guérit dans la totalité</td>
<td>Iléostomie</td>
<td>Guérison</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé extérieur</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9 ans</td>
<td>Syndrome dysentérique</td>
<td>Colite nécrosante</td>
<td>Exérèse,</td>
<td>Décès dans les suites opératoires</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé</td>
<td>bistouri</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30 ans</td>
<td>Syndrome dysentérique</td>
<td>Nécrose totale du côlon</td>
<td>Iléostomie</td>
<td>Décès le lendemain de l'intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>25 ans</td>
<td>Syndrome dysentérique</td>
<td>Colite nécrosante</td>
<td>Iléostomie</td>
<td>Décès avant l'intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>32 ans</td>
<td>Syndrome dysentérique</td>
<td>Colite nécrosante</td>
<td>Iléostomie</td>
<td>Guérison</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>19 ans</td>
<td>Syndrome dysentérique</td>
<td>Colite nécrosante</td>
<td>Iléostomie</td>
<td>Décès avant la réintervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28 ans</td>
<td>Syndrome dysentérique</td>
<td>Colite nécrosante</td>
<td>Iléostomie</td>
<td>Décès au 9e jour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20 ans</td>
<td>Syndrome dysentérique</td>
<td>Colite nécrosante</td>
<td>Iléostomie</td>
<td>Guérison</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>66 ans</td>
<td>Syndrome dysentérique</td>
<td>Colite nécrosante</td>
<td>Médical</td>
<td>Décès aux suites opératoires</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>51 ans</td>
<td>Syndrome dysentérique</td>
<td>Colite nécrosante</td>
<td>Médical</td>
<td>Guérison</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>77 ans</td>
<td>Syndrome dysentérique</td>
<td>Colite nécrosante</td>
<td>Médical</td>
<td>Décès aux suites opératoires</td>
</tr>
<tr>
<td></td>
<td></td>
<td>perforé</td>
<td>Médical</td>
<td>Médical</td>
<td></td>
</tr>
</tbody>
</table>
En conclusion de la recherche causale des syndromes diarrhéiques. Les bactéries, virus et parasites mis en évidence au laboratoire dans les coprologies sont multiples, multiplicité qui rend complexe ce chapitre de la recherche causale des syndromes diarrhéiques. Nous disons "complexes" car malgré le perfectionnement actuel des techniques de microbiologie, de la plupart des rapports relatifs aux enquêtes effectuées dans divers pays par les équipes de OMS et par d'autres enquêteurs qui ont certes apporté une contribution notable à l'appréciation du problème, il ressort que près des trois quarts des syndromes diarrhéiques restent indéterminés quant à leur étiologie.

Constatant par analyse les résultats des enquêtes menées au Sénégal que la totalité est la même (environ 20 %) au cours des diarrhées à germe déterminé et au cours des diarrhées à étiologie indéterminée, que ce soit en milieu urbain, sub-urbain ou en milieu rural, on peut penser avec le Pr BAYLET que le pronostic d'une diarrhée dépend moins des germes incriminés que des perturbations hydro-electrolytiques qu'elle engendre. Cette létalité particulière à nos régions agricoles est donc moins inhérente à la nature étiologique de syndromes diarrhéiques qu'à l'insuffisance des moyens de rééquilibration métabolique et plus encore au retard apporté à leur mise en route.

Aussi dans l'état actuel de nos connaissances, il importe d'une part de diminuer la mortalité due à la diarrhée, d'autre part de réduire le taux des infections intestinales dans ces régions.
L'eau est un élément indispensable au métabolisme en tant que solvant universel et réservoir d'ion H⁺ et OH⁻. De ce fait les besoins d'eau sont proportionnels au métabolisme énergétique.

L'eau représente 75 à 80 % du poids corporel à la naissance, 60 à 72 % chez l'adulte.

Le secteur extracellulaire du nouveau-né à terme contient 660 ml d'eau; celui d'un nourrisson de 7 Kg en contient 1400 ml et celui d'un adulte de 20 Kg 14,000 ml. Au regard de ces chiffres, les besoins métaboliques d'eau qui doivent être fournis en majeure partie par l'alimentation sont approximativement de:

- 330 ml/24 heures chez le nouveau-né
- 700 ml/24 heures chez le nourrisson de 7 Kg
soit l'équivalent de 50 % de liquide extracellulaire.
- 2000 ml/24 heures chez l'adulte moyen équivalent de 14 % de son liquide extracellulaire soit 3,5 fois moins que le nourrisson.

Si l'on se souvient que le liquide extracellulaire joue le rôle de la plaque tournante du métabolisme: hydrique placé entre le milieu extérieur et les cellules et immédiatement exposé aux coups hydro-electrolytiques du milieu ambiant, il apparaît à l'évidence que l'adulte est mieux armé que le nourrisson. Son liquide extracellulaire de plusieurs fois supérieur au volume de ses besoins hydriques constitue un volant de sécurité suffisant tandis que des modifications modestes de l'apport ou de l'excrétion d'eau peuvent altérer dangereusement le milieu extracellulaire des nourrissons et partant l'ensemble de son équilibre hydro électrolytique. Le schéma bien connu de Gamble illustre cet "inconvénient d'être petit". Voir figure n°
Echange d'eau et liquide extracellulaire chez l'enfant et chez l'adulte (Gamble)

SCHEMA N°
Les 3 secteurs liquidiens (Gamble)

Schéma N°
Le liquide extracellulaire ne subit pas seulement les effets directs des fluctuations des entrées et des sorties d'eau mais également celles des electrolyses tout particulièrement du sodium et du chlore, principaux ions extracellulaires. Les perturbations du liquide ultracellulaire sont toujours secondaires à celles du liquide extracellulaire. Le type d'échange entre ces deux secteurs hydriques dépend de l'osmolarité du liquide extracellulaire. De ces échanges naissent diverses variétés chimiques de déshydratation.

Voir figure n°

B - CYCLE ENTERO-SYSTEMIQUE DE L'EAU ET DEFINITION DE LA DIARRHEE AIGUE

S.F. PHILLIPS (113) a évalué chez l'adulte l'importance du cycle enterosystémique de l'eau. Chaque jour 9 litres entrent dans l'intestin sous formes alimentaires et de sécrétions digestives:

- 2 litres sous forme alimentaire
- Salive : 1 litre
- liquide gastrique : 2 litres
- bile: 1 litre
- liquide pancréatique : 2 litres
- liquide intestinal: 1 litre

Ce liquide est réabsorbé pour:

- 50 % par le Jejunum
- 30 % par l'Illéon
- 15 % par le colon

La quantité restante 0,1 à 0,2 litre, est exrétée dans les selles. Ainsi près de la moitié de l'eau extracellulaire d'un adulte et peut être beaucoup plus chez un nourrisson est réabsorbée quotidiennement par l'intestin.

Voir Fig. N°
L'eau est réabsorbée dans un laps de temps très court au moment des repas essentiellement au niveau de l'intestin grêle mais également au niveau du colon, si bien qu'une petite quantité seulement passe dans les selles. Toute interruption du cycle entéro systémique de l'eau va entraîner une augmentation du volume des selles et un bilan d'eau négatif. Cette malabsorption aigue de l'eau permet donc une définition de la diarrhée aigue.

Il s'agit de l'apparition rapide de selles liquides en quantité importante associée à une perte de poids. (39)

Ces deux éléments sont nécessaires à la définition. Par exemple on sait bien qu'on ne peut pas appeler diarrhée les selles liquides du nouveau-né s'il ne s'y associe une perte de poids.

Le mouvement de l'eau phénomène passif.

Le mécanisme de passage de l'eau à travers l'intestin a fait l'objet de nombreuses controverses (33). C'est le mérite de P.F. CURRAU (32.33) d'avoir montré que l'eau suit passivement les mouvements des solutés transportées activement en particulier de sodium. Plus précisément, le sodium serait transporté activement par la pompe à sodium de la cellule dans l'espace intercellulaire, l'asymétrie de cet espace limité d'un coté par la "zomella occludeus" peu perméable, et de l'autre par la membrane capillaire très perméable orienterait l'eau et le sodium dans le sens de l'absorption.

Figure n°

Dans un premier temps, il faut donc rappeler le mécanisme d'absorption de sodium.

La concentration intracellulaire du sodium dans le jejunum de l'enfant (65) est inférieure à la concentration de 140 m Es/l de la lumière intestinale et du plasma (58 bis). Comme pour toutes les autres cellules ceci est du à l'activité de ATPase Na \(^+\) K \(^+\) dépendante qui consomme de l'ATP provenant du métabolisme cellulaire. Les cellules épithéliales responsables d'un transport "orienté" possèdent une asymétrie membranaire. L'ATPase est localisée en effet, du coté sanguin, à la membrane basolatérale (129 bis) tandis que du coté luminal, la bordure en brosse n'en contient pas ou peu,
Aliments + sécrétions digestives

Sécrétion intestinale

Na

Nutriments

Na

Selles

Fig. — Cycle entérosyémique de l'eau.

Lumière intestinale

Cellule épithéliale

Sang

Na

Substrat

Na

Cl

AMPc

K

Fig. — Représentation schématique des mouvements d'absorption et de sécrétion intestinale du Na au niveau des cellules épithéliales de la muqueuse jéjunale.
mais un ou plusieurs systèmes permettant au Na^+ de diffuser du liquide luminal vers la cellule.

Ainsi le sodium entre par diffusion au niveau de la bordure en brosse et sort activement au pôle sanguin de l'épithélium. Cette absorption se fait en absence d'ingrédient de concentration de sodium entre lumière intestinale et plasma mais contre une faible différence de potentiel environ 5 mV (65).

Certains facteurs peuvent modifier l'absorption intestinale.
. Il s'agit tout d'abord d'une destruction cellulaire
. une inhibition de la pompe à Na^+ peut s'observer avec ouabaine pour des concentrations locales de 10^{-5} M.
. dans le cadre d'un renouvellement cellulaire accéléré ou les cellules des cryptes de Liberkühn remplaceraient les cellules plus différenciées de villosités, une diminution des activités d'absorption est concevable. C'est ce qui est évoqué pour les diarrhées aigues virales.

Inversement on peut stimuler l'absorption intestinale à deux niveaux.
. au niveau de la membrane basolatérale, la cortisone stimule la pompe à Na^+ (28 bis).Cette propriété pourrait être utilisée avec profit dans certaines diarrhées.
. au niveau de la bordure en brosse la perméabilité du Na^+ est augmentée par de nombreux nutriments.
. tous les monosaccharides alimentaires (sauf fructose)
. les disaccharides après hydrolyse
. les acides aminés (avec une efficacité variable suivant la classe de l'acide aminé)
. les dipeptides et les tripeptides (sauf hydrolyse préalable)

Le mécanisme de cette action semble se faire par un système de couplage thermodynamique ou de cotransport. Par exemple le glucose et le sodium pénètrent au niveau de la bordure en brosse par un système de transport commun.
Le glucose pénètre dans la cellule sous l'action du gradient électrochimique du sodium, tandis que la présence du glucose augmente la pénétration du Na. Ce système très étudié chez l'animal semble également exister dans le jejunum de l'enfant (65). Cette propriété a été utilisée dans le traitement de certaines diarrhées aiguës.

Il est important de noter que la stimulation de l'absorption par les nutriments n'est pas une action sur l'énergétique cellulaire mais une action "mécanique" au niveau de la membrane luminales des cellules de l'épithélium.

En parallèle à ce système de l'absorption stimulé par les nutriments, on a mis en évidence récemment un système de sécrétion avec de Na (40.41.135). Ce système implique une sécrétion de chlorure de Na et de bicarbonate de Na. Il est stimulé par une augmentation de la concentration d'AMP cyclique soit par stimulation de l'adenyl cyclase (hormones intestinales toxines bactériennes), soit par l'injection d'AMP cyclique, soit par inhibition de la phosphodiesterase (théophylline). Le mécanisme par lequel l'AMP cyclique stimule ce système n'est pas encore éclairci. Le glucose ne semble pas modifier ce système (40). L'oenabaine, l'absence de chlore et de bicarbonate, la diminution du pH à 7,1 du coté sanguin, diminuent ou abolissent la sécrétion (81). Il est possible que ce système soit réversible c'est à dire capable d'absorption ou de sécrétion (41.48). C'est ainsi que l'aspirine et l'adrenaline pourraient stimuler l'absorption de Na en agissant sur le système (47.50.52).

A côté du système d'absorption et de sécrétion active du Na il existe un système de perméabilité passive du Na à travers l'épithélium intestinal, en effet le gradient de concentration du sodium et surtout la différence de potentiel entre les deux faces de l'épithélium peuvent influencer directement les mouvements vers la lumière intestinale (40.41.60.135). La voie de passage semble entre les cellules, la perméabilité du Na de cette voie est augmentée par du glucose, le galabose; elle est diminuée lors d'une augmentation intracellulaire de l'AMP cyclique (40). Cette perméabilité passivement du Na semble quantitativement très importante au niveau du jejunum. Son importance irait décroissant vers l'iléon puis le colon. Son rôle n'est pas encore clairement établi in vivo.
Il se pourrait qu'elle soit la cause de l'établissement rapide d'une isoosmolarité entre liquide duodénal et plasma. La réabsorption de l'eau venant des aliments et des sécrétions digestives est donc un phénomène passif qui suit les mouvements de Na.

Les mouvements de Na sont eux-mêmes dépendants du métabolisme du Na sont eux-mêmes dépendants du métabolisme des cellules épithéliales dont la face sanguine est sensible aux stimulations hormonales et la face luminaux aux nutriments.

En conclusion à cette étude du cycle enterosystémique de l'eau, on peut dire que entre les repas, l'eau est réabsorbée couplée au Na. Au moment des repas la grande quantité d'eau entrant dans la lumière est de plus réabsorbée par stimulation de l'absorption du Na couplée aux nutriments.

La diarrhée aigue serait due à une interruption du cycle enterosystémique de l'eau, soit par:
- stimulation de la sécrétion intestinale
- soit par diminution de la réabsorption du Na couplée aux nutriments.
- défaut de réabsorption colique.
C - DIFFERENTS TYPES DE DIARRHEES

Au cours des diarrhées aigues infectieuses, les agents infec­tieux susceptibles de provoquer une infection intestinale et une diarrhée peuvent être classés en trois catégories:

- une première catégorie dite non invasive ne pénétrant pas la muqueuse intestinale.
La diarrhée est due à une enterotoxine c'est le cas de vibrio choléra.

- un deuxième groupe représenté par les shigelles n'envahit que les cellu­les épithéliales et certaines souches (sh dysenterea) secrètent une entero­toxine.
Les virus agissent aussi par invasion épithéliale entraînant une atrophie villositaire.

- les salmonelles représentent un troisième groupe de bactéries invasives; elles pénètrent dans les macrophages de la paroi intestinale située dans les formations lymphoïdes telles que les plaques de Peyer. L'atteinte in­testinale et la diarrhée sont directement en rapport avec cette pénétra­tion sans intervention d'une enterotoxine.

<table>
<thead>
<tr>
<th>ANOMALIES HISTOLOGIQUES</th>
<th>LUMIERE INTESTINALE</th>
<th>PAROI (PENETRATION)</th>
<th>ENTEROTOXINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIBRIO CHOLERA</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>SHIGELLA</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>SALMENELLA</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Par J.L. VILDE et COLL (143)

TABLEAU N° 12
I) Le Choléra:

Pour l'étude des diarrhées liées à une entérotoxine nous prêtons le choléra pour modèle.

C'est à la suite de la dernière pandémie que de nouveau l'attention a été tirée sur le choléra et qu'est née la conception actuelle de la physiopathologie des diarrhées aigues qui est à la d'une approche rationnelle de leur traitement.

Les recherches nouvelles permettent de mieux comprendre le mécanisme de la diarrhée qui peut atteindre des dimensions d'une véritable "vindange" intestinale.

La toxine cholérique: responsable de la diarrhée cholérique

Propriété physicochimique de la toxine. Il est maintenant bien établi que le vibrio cholérique agit par l'intermédiaire d'une toxine. Cette toxine appelée choleragine (54.55.56.57.91) est une protéine simple et homogène. Poids moléculaire approximativement 84.000.

Elle peut être dissociée de façon reversible en sous unité du poids moléculaire 14000.

Les cultures de vibrios contiennent également une anatoxine naturelle appelée choleragénioïde. Poids moléculaire 56000. constitué d'un mélange d'au moins trois isomères et pouvant être scindés en quatre sous unités identiques dépourvues d'effet pathogène. Elle est immunologiquement identique à la toxine.

Une anatoxine peut être dangereuse obtenue à partir des cultures par agitations ou action de la chaleur, avec apparition d'une polymène intermédiaire, le procholeragénioïde dépourvu d'effet toxique mais hautement immunogène.
Le choleragène peut être dissocié par électropturèse en une fraction lourde, identique au choléra gonoïde et une fraction légère (poids moléculaire 28.000) propre à la toxine.

La première possèdeait une structure lui permettant de reconnaître les récepteurs spécifiques des cellules de l' épithélium intestinal et serait le support immunologique du choleragène et du choleragène.

La deuxième qui représente peut être un agrégat de sous-unités plus petites serait la fraction active pathogène de la toxine. Il est important de constater que cette toxine est identique quelques soient les serotypes Inaba ou Ogawa des biotypes classiques ou ELTOR (SI).

Action pathogène de la toxine cholérique

Cette toxine permet de reproduire le syndrome cholérique lorsqu'elle est appliquée sur la muqueuse intestinale c'est à dire: la "vidange" hydro électrolytique. Le volume des selles varie entre 5 et 70 litres perdus en moyenne en trois à six jours (7I). Les concentrations en sodium et en chlore de cette évacuation sont voisines ou légèrement inférieures à celles du plasma, celles en potassium et en bicarbonate sont au contraire plus élevées (2I.27.25.99) par contre la concentration en magnésium est le cinquième ou le dixième de celle du plasma. Celle en protide est faible, inférieure à 250 mg et évalué récemment à 85 mg pour 100. Tout ceci contribue à la réduction du volume des espaces extracellulaires avec dehydratation, une diminution ou arrêt de la sécrétion urinaire, une acidose, une hypokaliémie et hypomagnésémie.

Une fois cette toxine placée au contact de la muqueuse, son action ne peut plus être évitée. Le lavage de la lumière intestinale avec une solution saline ou additionnée d'anatoxine ne modifient pas l'effet sécrétoire, même lorsque ces manoeuvres sont effectuées quelques minutes seulement après son application (52). Chez des hommes volontaires l'administration orale des filtrats de culture de vibrio choléra Inaba 569 B provoque également une diarrhée.
Immunité antitoxique :

A côté des anticorps antimicrobiens capables d'empêcher la multiplication des vibrios et de provoquer leur destruction, d'autres anticorps interviennent pour prévenir ou modifier l'action de la toxine.

Des antitoxines circulantes sont mises en évidence (72) chez la plupart des cholériques à la suite de la maladie (58) ainsi que chez les volontaires recevant des anticorps antitoxiques anticholériques. On ignore encore si des anticorps antitoxiques peuvent être produits au niveau de la paroi intestinale. Par contre, les antitoxines circulantes protègent la muqueuse contre les effets de la toxine comme le démontrent les expériences de la circulation croisée entre animal immunisé et non immunisé (142).

Ces recherches et la préparation d'une anatoxine à haut pouvoir antigénique permettent d'espérer la mise au point d'un vaccin qui immunise l'homme contre les effets de la toxine.

Localisation des pertes hydroélectrolytiques

- Localisation des pertes:

Il est intéressant de déterminer à quel niveau du tube digestif agit la toxine cholérique. Il est prouvé que l'estomac n'intervient pas dans cette perte hydroélectrolytique (116). De même il ne semble pas que les sécrétions biliaires et pancréatiques soient augmentées (71) ni que la toxine ait une action directe sur le colon.

Tous les travaux confirment que la fuite hydro-electrolytique a lieu exclusivement dans le grêle qui peut produire chez l'homme cholérique 1 à 2 litres par heure (52). Cette perte se fait sur toute la longueur du grêle.

Chez l'homme à la phase aigue de la maladie, la perfusion intestinale à faible débit avec un indicateur non absorbable, permet de calculer le débit liquidien jéjunal (6,2 ± 3,2 ml/mm) et iléal à jeun (8,9 ± 4ml/mm.
Une bonne corrélation existent entre le flux jejunal et le volume des selles mais lorsque le débit de la perfusion est important, la secrétion d'un jéjunum est plus abondante et de plus prolongée que celle de l'iléon.

Il semble donc que l'intestin proximal joue un rôle prédominant dans la diarrhée cholérique (6). Quant à la composition du liquide déversé dans le grêle elle est globalement isotonique au plasma les concentrations des divers électrolytes variant tout au long de l'intestin de manière sensiblement identique à celle du contenu normal (6,71) celle du sodium et du potassium restent à peu près stables et voisines des concentrations plasmatiques, celle du chlore diminue de l'intestin proximal jusqu'à l'intestin distal, celle du bicarbonate varie en sens inverse (27,21).

Site d'action de la toxine cholérique:

L'efficacité de la toxine nécessite son intervention au niveau des cellules épithéliales de la muqueuse (II8) et sa fixation sur leurs membranes.

La réalité et le siège de cette fixation sont précisés grâce à des méthodes immuno-histo-chimiques et auto radio-graphiques. Il est possible que la toxine diffuse dans la cellule épithéliale et la lamina propria (77) Il est plus probable qu'elle se fixe de façon uniforme sur toute la surface des villosités et des cryptes et reste absorbée sur la membrane limitante des microvillosités ainsi que le montrent les expériences récentes consistant à introduire la toxine dans une anse ligaturée.

- L'anatoxine naturelle est également fixée au niveau des membranes épithéliales (II2). L'étude de leurs effets compétitifs confirme que la toxine et l'anatoxine naturelle occupent des sites de fixation spécifique identiques sur les membranes épithéliales (II5) et qu'un ganglioside ou des substances analogues isolées de la muqueuse constituent le support de ces sites récepteurs. (I38)
- une partie seulement de la molécule de la toxine ou de son anatoxine naturelle paraît responsable de fixation spécifique ; elle est différente de la fraction qui supporte les qualités antigéniques et de celles à action entero pathogène (identiques à celles de certaines souches E. Coli dont le siège de fixation est différent (I15).

Le devenir de la toxine après la fixation reste hypothétique. Il est certain que l'apparition d'anticorps antitoxiques dans la circulation générale, l'action à distance de la toxine déposée dans l'anse intestinale isolée sur l'ensemble de l'intestin (I41) ou sur d'autres segments du grêle du même animal, voire même d'un autre animal receveur (I42) permettent de penser qu'elle diffuse dans la circulation. Or cette toxine n'est mise en évidence ni dans la lamina propria (I12) ni dans la lymphe du canal thoracique (I18). Il est possible qu'elle diffuse dans la circulation en quantité trop faible pour être décelable autrement que par son action pathogène.

Mécanisme d'action de la toxine cholérique :

L'accumulation d'une telle quantité d'eau et d'électrolyte dans les anses de l'intestin grêle sous l'action de la toxine cholérique peut résulter de mécanismes différents.

- l'hypothèse d'une exsudation massive du plasma en raison de la destruction de la muqueuse comme une brûlure ne peut être aujourd'hui retenue. Les seules modifications concernant la dilation des capillaires, l'oedème de la lamina propria et l'infiltration de celle-ci par les cellules inflammatoires la sécrétion massive de mucus et de liquide notamment au niveau des cryptes avec aplatissement des villosités (52.71) traduisent des troubles fonctionnels mais non des altérations anatomiques cellulaire (26). La pauvreté en protide de liquide secrété démontre également que le liquide intestinal n'est pas du plasma exsudé. Enfin une altération anatomique profonde de la paroi n'est pas compatible avec la conservation de l'absorption du glucose chez l'homme et l'animal.
- L'hypothèse d'une transudation plasmatique à travers la muqueuse:
la filtration passive d'eau et d'électrolytes à travers la muqueuse pourrait résulter d'une augmentation de la pression hydrostatique dans les capillaires et le milieu interstitiel de la paroi, ou d'une augmentation de leur perméabilité (49.71). Certes l'augmentation de la pression exercée sur la face sereuse d'une préparation intestinale de chien normal provoque d'abord la suppression de l'absorption puis ensuite une sécrétion d'importance analogue à celle du choléra. Mais alors le mouvement du glucose est inversé en même temps que celui des liquides alors que dans le choléra son absorption reste normale. En outre, une augmentation de la pression capillaire intestinale paraît peu vraisemblable chez un malade hypotolémique et hypotendu.

* Ces deux théories sont aujourd'hui abandonnées. On pense actuellement à l'existence d'un trouble fonctionnel du transport actif des électrolytes mécanisme actuellement admis, bien qu'il ne soit pas encore parfaitement précisé. Des constatations expérimentales permettent de penser que ce transport actif d'ions, entraîne celui d'une quantité équivalente d'eau, le liquide accumulé dans l'intestin étant ainsi sensiblement isoosmotique. Ce transport d'eau lié à celui des électrolytes peut être réalisé contre un gradient de pression véritable "pompe à électrolytes" au prix d'une consommation d'énergie.

A partir des travaux de DESJEUX et COLL (38) sur les diarrhées aiguës en particulier celle du choléra, on a pu proposer que les diarrhées aiguës à toxine non seulement celle du vibrio cholérique mais également d'autres toxines bactériennes comme E. COLI et dans certaines circonstances les salmonelles, les shigelles ou des staphylocoques pouvaient avoir un mécanisme identique.

EN CONCLUSION: on peut dire que la toxine cholérique stimule le système de sécrétion, ne modifie pas le système d'absorption et diminue la perméabilité passive; il s'en suit une rupture du cycle entéro-systémique de l'eau en absence de stimulant ou du système d'absorption. En effet, la stimulation du système de sécrétion diminue la capacité de réabsorption et augmente l'eau intraluminale qui entraîne la diarrhée; cette stimulation du système sécrétoire serait due à la fraction A de la toxine qui seule, pénètre
dans le cytoplasme et stimule l'adenyecyclase située au niveau de la membrane basolatérale en présence de NAD. Il s'en suit une élévation de AMP cyclique intracellulaire et une modification des mouvements du NA et de l'eau, cette stimulation ne durera que le temps d'une génération de cellules épithéliales (environ 48 H).

Les Diarrhées par envahissement :

Il y a attachement puis pénétration des germes dans les cellules épithéliales où ils se multiplient. On dit que ces bactéries sont "envahissantes" ou "pénétrantes"; il en résulte des lésions muqueuses caractéristiques. Ces diarrhées semblent dues à une atteinte colique prédominante. Elles sont responsables d'un syndrome clinique dysentérique: selles liquides peu abondantes, contenant du sang, du pus et du mucus. A ce syndrome correspond un défaut d'absorption de Na et de l'eau associé à une atteinte histologique. Ce défaut d'absorption ne semble pas directement lié à une modification de la perméabilité passive mais à un phénomène actif stimulé par adénycyclase. Il s'agit essentiellement de souches de shigelles, de salmonelles et E. Coli. Ces bactéries semblent pouvoir être responsables simultanément de diarrhée aiguë atoxine et d'un syndrome dysentérique.

Diarrhée à shigella :

Ainsi chez le singe infecté par shigella (59) on a pu mettre en évidence 3 types de réponses:

- un syndrome dysenterique avec atteinte histologique du colon et intégrité du grêle.
- un syndrome diarrhéique avec anomalie du transport au niveau du jejunum et aucune atteinte histologique.
- un syndrome dysenterique et diarrhéique résultant de l'association des deux tableaux précédents.
La physiopathologie des infections à salmonelles:

comporte encore bien des points obscurs ceci provient du grand nombre de serotypes, de la variation, de leur virulence et du grand nombre d'espèces animales réceptives. Seules les souches de salmonelles qui envahissent la muqueuse provoquent une exsudation de liquide et de signes histologiques d'infiltration à l'opposé de souches non virulentes, non invasives. Les relations entre le caractère invasif, les lésions histologiques et la production de diarrhée ont été étudiées par GIANNELA et COL (61) sur l'intestin de lapin et chez le singe (124). Si le caractère invasif est nécessaire, il est cependant pas suffisant pour provoquer la diarrhée, un facteur bactérien mal identifié qui n'est pas une enterotoxine semble être responsable de la fuite liquidiennne. De plus, il n'existe pas de relation entre la virulence c'est à dire la capacité de dissémination extra intestinale et la capacité de produire la diarrhée locale de l'endotoxine dans la genèse des lésions intestinales.

Le fait que seules les souches porteuses de l'antigène O ou antigène de paroi c'est à dire de l'endotoxine soient virulentes. L'aspect toxinfectieux des manifestations de la fièvre typhoïde ont depuis longtemps suscité d'importants travaux pour préciser le rôle de l'endotoxine dans la pathologie des manifestations cliniques (66.73.78). L'endotoxine virulente elle même ne semble pas jouer de rôle et les manifestations cliniques des salmonelles humaines sont bien différentes des phénomènes observés après injections intra-veineuse d'endotoxine.

Le rôle local de l'endotoxine dans la genèse des lésions intestinales a été bien mis en évidence des 1935 par les travaux de J. REILLY (121) ceux ci ont clairement montré l'action de l'endotoxine au niveau du système nerveux autonome dans l'origine des lésions intestinales.

Les bacilles typhiques ingérés traversent sans léser la muqueuse intestinale; ils sont arrêtés par les ganglions lymphatiques mésentériques. A ce niveau ils se multiplient, une partie des bactéries se lyse libérant l'endotoxine, l'endotoxine va irriter le sympathique abdominal, déclenchant par son intermédiaire des lésions intestinales au niveau des plaques de Peyer.
des lésions hémorragiques digestives et éventuellement des perforations. Ces notions illustrent la physiopathologie des principaux symptômes plus toxiques qu'infectieux, de la fièvre typhoïde. Elles sont à la base du concept d'aggravation possible de symptômes provoqués par une libération massive d'endotoxine, se situe par lyse microbienne après une dose de charge d'antibiotique au début du traitement. Dans l'étude de la génèse des diarrhées aigües infectieuses dites par envahissement, les résultats sont encore trop fragmentaires pour être tenus pour certains.

Les diarrhées virales:

Plusieurs groupes de virus peuvent être tenus pour responsables des diarrhées aiguës.

1) Les "Parvovirus like" humains dont l'agent Norwalk est le plus étudié et qui peut provoquer une diarrhée à tous les âges.
2) Les "Rotavirus" humains qui touchent surtout les nourrissons de 6 mois à 24 mois.
3) d'autres virus peuvent être à l'origine de certaines diarrhées.

On ne connait que peu le mécanisme des diarrhées aiguës virales. On sait cependant que l'atteinte histologique se limite à la muqueuse de l'intestin.

Dans le groupe de parvovirus, les études cliniques indiquent une malabsorption des graisses et du xylose (130,132). Cette malabsorption peut exister et persister au moins une semaine alors que les symptômes cliniques sont incessants et ne durent habituellement que 24 ou 48 heures. La muqueuse intestinale est altérée; les villosités sont courtes et les cryptes sont hypertrophiques avec de nombreuses métoses, la lamina propria est infiltrée de leucocytes et de cellules mononucléées, les cellules épithéliales apparaissent cuboidales et contiennent des vacuoles (1,43,131); en microscopie électronique ces cellules sont altérées au niveau des microvillosités des mitochondries du reticulum endothélial avec de nombreux
lysosomes. Des particules virales ont été dues dans ces cellules. Ces lésions peuvent précéder les symptômes (qui ne sont pas constants malgré ces lésions). Parallèlement à ces lésions histologiques, on observe une diminution des activités enzymatiques liées à l'absorption. À l'opposé, l'adenylyl-cyclase intervenant dans la sécrétion du Na n'est pas modifiée. L'ensemble de ces résultats a été obtenu par l'étude de volontaires adultes ayant ingéré l'agent viral pathogène car on ne donnait pas de modèle expérimental de cette virose.

- À l'opposé on sait peu de chose de la fonction intestinale de l'enfant infecté par des Rotavirus. Cependant, les quelques documents que l'on possède au cours des épidémies suggèrent que l'atteinte intestinale est comparable à celles des parvovirus (8.9.70). Le point le plus important c'est que le virus alors qu'il a son action maximale à 40 heures, ne stimule pas de manière significative la sécrétion active du Na et ceci l'oppose fortement à l'action de la toxine cholérique qui elle, stimule la sécrétion active du Na. Le second point très différent de ce qu'on observe dans le choléra est que l'intestin infecté par le virus n'est pas stimulable par le glucose

EN CONCLUSION : on peut dire que sur le plan de la physiopathologie, il semble que le système d'absorption du Na ne soit pas stimulable par le glucose pendant la phase aigüe qui commence 24 heures après l'infection virale. Le système de sécrétion ne serait pas modifié. Le cycle entéro-systémique de l'eau serait interrompu au niveau de la réabsorption.

D - CONCLUSION GÉNÉRALE

L'étude de l'absorption intestinale dans les diarrhées aigües suggère que l'on peut schématiquement opposer deux tableaux :

- 1) les diarrhées aigües avec hypersécrétion d'eau, du sodium et du sucre; c'est ce qu'on observe dans les diarrhées aigües provoquées par la toxine cholérique. Dans cette situation, on a proposé de donner par la bouche une solution d'électrolyte contenant du glucose. Il faut cependant remarquer que cette solution, telle qu'elle est proposée actuellement, n'apporte pas
suffisamment de calorie pour éviter une malnutrition de l'enfant. Une réalimentation précoce plus complète devrait être préconisée.

- 2) A l'inverse, il existe des diarrhées aigues avec altération du système d'absorption de l'eau, du sodium et du sucre. C'est ce qu'on observe lorsqu'il existe une destruction ou une immaturité des cellules de l'épithélium intestinal. Dans les selles, la présence de plus de 50 m Mole par litre de sucres réducteurs et d'un pH inférieur à 5 doivent faire discuter cette possibilité. Dans cette situation, l'apport des aliments par la bouche peut être un facteur d'aggravation importante de la diarrhée et de la déshydratation. La réalimentation dans ces cas, peut être difficile et dépend essentiellement de la durée, de l'importance de la malabsorption. Un apport calorique semble d'autant plus important que le sujet est jeune.
V - DESCRIPTION CLINIQUE

Avec une rapidité variable suivant la gravité de la diarrhée s'installe un tableau impressionnant de deshydratation.

A - MODE DE DÉBUT :

- **L'interrogatoire:**

 du malade si c'est un adulte ou des parents si c'est un nourrisson ou un nouveau-né (à condition que l'état général du malade nous le permette) précisera:

 - l'existence d'une diarrhée dont on cherchera à préciser l'heure et le mode de début.

 - souvent progressif, le syndrome diarrhéique étant précédé par une anorexie des vomissements ou des nausées.

 - mais le début peut être aussi d'une extrême rapidité, la première manifestation étant l'émission d'une selle liquide après une brève période de douleurs abdominales.

 - On note aussi parfois des diarrhées à début retardé se manifestant d'emblée par un grave état de deshydratation et de choc, par perte liquidienne intra-intestinale avant l'extériorisation même des selles liquides.

2) **Caractéristiques des selles:**

 - leur richesse en eau qui atteint 90 à 98 %
 - le nombre des défécations peut varier de quelques selles par jour dans les formes modérées à plusieurs dans les diarrhées sévères.
 - le volume de chaque émission est variable mais le poids global par 24 H est toujours considérablement supérieur à celui des selles normales.
si la couleur des selles à peu d'intérêt par contre l'aspect est plus utile à noter dont les éléments orientent vers l'étiologie.

3) Les signes précursseurs ou associés:

le ballonnement abdominal précède et accompagne fréquemment la diarrhée Il est cause d'inconfort et d'agitation et dans le cas extrême peu simuler une occlusion haute.

les vomissements peuvent parfois manquer, constituant une source supplémentaire de déperdition hydro-electrolytique et une gêne considérable à la rehydratation buccale et au traitement.

les douleurs abdominales continuent

Mais le plus souvent en Afrique Noire le malade est vu tardivement dans un état de deshydratation assez marqué, ne permettant pas au médecin d'apprécier ces différents éléments caractérisant les diarrhées.

Notons aussi que la plupart des médecins ne disposeront pas non plus des analyses chimiques leur permettant de juger les désordres hydroelectrolytiques Ils seront réduits aux seuls éléments que la clinique leur fournira.

B - PERIODE D'ETAT

Pour l'intelligibilité de la description, les éléments du syndrome clinique peuvent être groupés en cours d'examen en:

- signes de deshydratation extracellulaire
- signes de deshydratation intracellulaire
- estimation des pertes pondérales.
Les signes de déshydratation extracellulaire

On y distingue ceux traduisant la déshydratation du compartiment intestinal et ceux du compartiment vasculaire.

Signes de déshydratation du compartiment intestinal :

La persistance du pli cutané:
la peau et le tissu cellulaire sous-cutané sont particulièrement riches en eau, à laquelle ils doivent en partie leur turgor et leur élasticité.
Normalement après avoir été pincé entre le pouce et l'index, la peau reprend immédiatement son aspect lisse et plat.
Dans une déshydratation :
 - modérée: elle donne une sensation pâteuse particulière au pinçement sans garder le pli.
 - à un degré de plus, le pli persiste quelques secondes, puis s'affaisse lentement.
Le lieu de prédilection pour la recherche du signe du pli est la partie latérale de la paroi abdominale.
Le signe du pli n'est pas constant, il est retrouvé dans environ deux tiers des cas; il manque dans les déshydratations modérées surtout lorsque domine une déshydratation intracellulaire. Il en est de même chez l'enfant atteint de Kwashiorkor. Il est difficile à apprécier chez les obèses.

Les signes oculaires:
 - l'exagération de cerne orbitaire et l'enfoncement des globes oculaires sont dus à la déshydratation du tissu cellulaire péri oculaire. Il constitue avec le faciès aminci, le teint ardoisé.
 - les yeux creux du regard exprimant l'inquiétude ou une lassitude indifférence. Le tableau classique du faciès "toxique".
 - l'hypotonie des globes oculaires qui ont perdu leur consistance normale sont mous et se laissent facilement déprimer par le doigt.
 - Les paupières qui se ferment mal au cours du sommeil.
chez le nouveau-né ou le nourrisson la dépression de la frontanelle antérieure est observée chez les deux tiers des déshydratés ayant une frontanelle perceptible à la palpation. Chez le nouveau-né dans les cas extrêmes on peut même noter le chevauchement des os de la voute crânienne. Ce signe traduit la diminution du volume du contenu crânien essentiellement du liquide céphalorachidien, mais aussi du tissu cérébral lui-même lorsqu'existe une déshydratation cellulaire surajoutée.

Les signes de déshydratation du compartiment vasculaire:

la chute de la tension artérielle est expression clinique la plus directe de la réduction du volume plasmatique.

la palpation du pouls fournit rapidement des indications suffisantes sur l'état circulatoire. Un pouls rapide et faiblement frappé avec des extrémités froides et plus ou moins cyanosées chez un enfant diarrhéique suffit à suspecter l'effondrement tensionnel que confirmera la mesure de la tension artérielle.

À l'extrême se trouve réalisé un état de collapsus cardiovasculaire avec un pouls pratiquement imperceptible. Dans ce cas, il serait inutile de s'acharner à prendre la tension artérielle. Dès lors le rétablissement d'extrême urgence d'une volémie suffisante par voie intraveineuse s'impose.

L'oligurie:

L'oligurie est pratiquement constante au cours des déshydratations aigues et peut confirmer à l'anurie dans les formes sévères. C'est la traduction renale de la diminution du volume sanguin circulant. Elle résulte de la diminution de la filtration glomérulaire et une augmentation de l'absorption tubulaire. Elle représente pratiquement le seul moyen efficace dont dispose l'organisme pour limiter les pertes d'eau et d'électrolyte et pour préserver ce qui reste de son capital hydrique dangereusement amputé.

Les signes de déshydratation intracellulaires:

La soif: signe de la déshydratation cellulaire c'est l'un des meilleurs reflets de l'hypertonie extracellulaire.
Elle est facilement exprimée par le grand enfant et l’adulte, chez le plus jeune par des clappements, des cris et l’agitation.
Cette soif s’accompagne d’une sècheresse de la bouche, langue et des muqueuses.
- d’un vomissement des sécrétions glandulaires que traduisent
 - l’aspect sec et dépoli de la conjonctive et de la cornée
 - la sècheresse des aisselles.

Les signes de souffrance cérébrale:
- La fièvre: elle atteint et dépasse fréquemment 40 °C aggravant à son tour les pertes d’eau insensibles et pouvant favoriser les convulsions.
 Elle est favorisée par la chaleur des zones intertropicales et l’enveloppement excessif dans des vêtements.
- les troubles de la conscience; sont très fréquents.
- Somnolence intermittente avec fixité du regard entrecoupée d’agitation.
- Parfois on peut observer un coma traduisant une deshydratation très sévère
- Les convulsions: avant traitement paraissent bien moins fréquentes que celles observées en cours de rehydratation. Se rencontrent avec prédilection chez les nourrissons de moins de 9 mois. Elles représentent un élément de pronostic indubitablement défavorable.
 - crises toniques pures ou crises tonico-ocltoniques qui peuvent être isolées ou généralisées, brèves ou convulsions sub-intranses, état de mal convulsif prolongé pendant des heures.

Les troubles de l’équilibre electrolytique et acidobasique:

Même dans le domaine essentiellement biologique la clinique donne de précieux renseignements, et cela rend de très grands services aux médecins exerçant en zone rurale africaine où la pratique biologique est quasi inexistant.
- L'hypokaliémie se traduira par des symptômes d'ordre cardiaque, neuro-musculaire, digestif et renal.

Les signes cardio-vasculaires cliniques rares consistent en une hyperpulsabilité artérielle due à la baisse de la tension artérielle distolique élargissement de la différentielle avec une hypotension osthostatique, en des souffles anorganiques traduisant des troubles de la repolarisation.

Les signes neuro-musculaires :
- l'asthénie profonde, abolition des réflexes ostéotendineux puis paralysie flasque; comme ces différents signes apparaissent pour l'hyperkaliémie, l'absence de paresthésie serait un signe destructif différentiant l'hypokaliémie de l'hyperkaliémie.

Au Niveau renal:
- Les urines émises sont très acides.

Les signes digestifs:
- sont conséquents de l'atonie de la musculature lisse gastro-intestinale ilius paralytique, dilatation gastrique.

- L'hydratation est le témoin d'une perte d'eau supérieure à la perte en sodium. Cette natiémie élevée existant malgré un déficit sodique important entraîne une hyprosmolarité qui au niveau diencéphalique se traduit par la soif.

- L'acidose métabolique reposant sur l'hyperventilation et parfois trouble de la conscience.

Mais en pratique courante, on assiste à des associations diverses de ces signes pour peu que la deshydratation soit importante et intéresse les deux secteurs et toute interprétation clinique précise du déséquilibre electrolytique est oiseuse.
Estimation des pertes pondérales

L'état de déshydratation aigue se reconnaît cliniquement au premier coup d'oeil et se confirme

par la pesée si l'on a les moyens. La perte pondérale est le critère essentiel du diagnostic et son estimation est en outre indispensable à la bonne conduite de rehydratation.

dans les zones rurales en Afrique noire, la bascule peut faire défaut et on est réduit à des approximations

- par mensuration à l'aide d'un mètre ruban puis à l'aide de la formule de Koreutz pour donner le poids idéal:

$$P = T \text{ (cm)} - 100 - \frac{T \text{ (cm -150)}}{4}$$

puis à partir des valeurs obtenues faire référence aux courbes du poids et taille standard.

Tableau courbe de Poids.

Malheureusement, nous ne pouvons pas tout le temps nous fier à cela car la malnutrition calorico-proséique enracinée en Afrique entrave la croissance rendant aussi très difficile une estimation des pertes hydro-electrolytiques. Une autre notion est à retenir. Aucun enfant africain n'est suivi régulièrement sur le plan de la santé encore moins les adultes, alors il est presque impossible de connaître le poids exact du malade avant l'installation de la maladie.

- à partir des éléments que la clinique nous révèle, nous pouvons avoir une notion presque exacte sur l'état de déshydratation. Une attention particulière est à retenir pour les sujets obèses chez qui les signes de déshydratation sont en retard sur les pertes à l'inverse des sujets malnutris.
Surface Corporelle du Grand Enfant et de l'Adolescent

<table>
<thead>
<tr>
<th>cm</th>
<th>kg</th>
<th>Surface corporelle m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>160</td>
<td>2.9</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>170</td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

Croissance Somatique Chez les Filles de 0 à 19 ans

- **Taille**: Mesure de la taille en cm pour différentes âges.
- **Poids**: Mesure du poids en kg pour différentes âges.

Croissance Somatique Chez les Garçons de 0 à 19 ans

- **Taille**: Mesure de la taille en cm pour différentes âges.
- **Poids**: Mesure du poids en kg pour différentes âges.
Deshydratation bénéfique

- soif
- tachycardie
- légère persistence du pli cutané
- diurèse est conservée.

Elle correspond à une carence hydrique d'environ 5 % du poids corporel (sujet moyen) soit 50 ml/Kg chez l'enfant ou 2500 ml chez l'adulte de 50 Kg (103); plus légère, la deshydratation pourra ne se manifester que par une soif intense et une diarrhée sérieuse.

Deshydratation modérée:

- soif intense
- tachycardie
- faiblesse du pouls
- hypotension orthostatique
- plu cutané bien net
- hypotonie des globes oculaires
- baisse de la diurèse

Carence hydrique d'environ 8 % soit 80 ml/kg chez l'enfant ou 4000 chez un adulte de 80 Kg.

Deshydratation grave

- souvent un état de collapsus cardiovasculaire
- pouls faible ou nul
- cyanose des extrémités (ongles et lèvres)
- retard à la recoloration
- hypotension
- stupeur ou coma
- les yeux enfoncés
- pli cutané exagéré
- oligoanurie ou anurie
Chez le nourrisson: dépression des frontanelles, carence hydrique de 10 à 11 % soit 100 à 110 ml/Kg. chez l'enfant ou 5000 chez un adulte de 50 Kg.
VI EXAMENS BIOLOGIQUES

Les examens biologiques ne sont pas utiles pour le diagnostic de
deshydratation aigue elle même, diagnostic basé sur des éléments purement
cliniques.

A - EXAMEN SANGUIN

Le photomètre à flamme permet le dosage rapide du sodium et
potassium.

- Sodium : représente l'élément le plus important de l'ionogramme et aussi
l'essentiel de la colonne des cations et sa mesure donne déjà une bonne
appréciation de la concentration globale ou électrolyte.
- La normale se situe entre 135-142 m Eq/l. Mais ici on notera une hyper-
natiémie.

- La kaliémie : la normale entre 4 et 5,5. On notera soit une hypokaliémie
ou une normokaliémie traitresse, la perte du potassium intestinal étant
masquée par le passage de ce cation dans les cellules vers le milieu extra-
cellulaire; il faudra donc en tenir compte lors de la rehydratation car sans
rehydratation la kaliémie tend à baisser parfois dangereusement en absence
d'apport externe de potassium en raison du mouvement inverse de ce cation
du liquide extracellulaire vers le milieu intracellulaire.

- La calcémie est habituellement normale (90-110 mg/l ou 4,5 5,5 MEq/l)
mais peut être abaissé surtout chez les enfants carencés en vit. D cons-
tituant alors une cause favorisante de convulsion. Elle a tendance à s'aba-
isser en cours de rehydratation comme le potassium en absence d'apport exo-
gène.
- l'équilibre acido-basique

Dosage de l'ion bicarbonate : chose rare en Afrique noire
normale : 20 à 30 MEq/l
ou la réserve alcaline 20) 27 volume pour cent.
une acidose de degré variable est pratiquement constante au
cours de la deshydratation et constitue une cause de fuite du potassium
cellulaire, l'acidose se corrige habituellement par la simple rehydratation
et le rétablissement des fonctions renales.

- les signes biologiques d'hemoconcentration

Témoignent la réduction du volume du compartiment vasculaire.
- augmentation de l'hématocrite (supérieur à 45 M)
- hyperprotidémie supérieure ou égale à 80 g/l sauf chez les
sujets en carence protidiques antérieures ou la protidémie sera normale ou
bien abaissée.

B - EXAMEN DES URINES

Il suffit de surveiller le rétablissement de la diurèse en notant
le volume émis. Toutefois dans un but de recherche ou en prévision des for-
mes compliquées (et ceci en milieu hospitalier) ou réagissant mal à la
rehydratation, l'habitude est prise d'y doser le sodium, le potassium et
éventuellement l'urée si possible le chlore.

C - EXAMEN DES URINES

C - EXAMEN DES SELLES

Coproculture. Examen complémentaire à visée étiologique associée
le plus souvent à un antibiogramme seulement dans les formes graves à évolution
longue, car en général la rehydratation améliore l'état du malade et
son rétablissement.
VII - ÉVOLUTION

A - SPONTANÉE:

- Évolution des formes benignes :

 . souvent favorable avec une stagnation pondérale et une ouverture vers le cycle diarrhée - malnutrition si l'alimentation n'est pas améliorée.
 . des fois on assiste à une évolution vers une forme chronique ou grave.

- Évolution des formes graves :

 Se voient surtout chez les enfants qui sont entrés dans le cercle viscéreux : diarrhée - infection malnutrition; ou chez les enfants de plus de 3 ans et les adultes atteints de choléra. L'évolution spontanée se fait vers un état de choc avec acidose, insuffisance rénale fonctionnelle très grave, des convulsions et enfin vers la mort dans la presque totalité des cas.

B - SOUS-TAITEMENT:

De nos jours le taux de mortalité des deshydratés reste le même en Afrique noire malgré l'arsenal thérapeutique issu des recherches effectuées dans d'autres pays du monde. Ceci est du à de nombreux facteurs dont nous ferons le détail dans le chapitre suivant.

Mais normalement, une rehydratation précoce bien conduite améliore d'une façon spectaculaire le pronostic et de ce fait le taux de mortalité. Qu'il nous soit permis de donner ici l'exemple d'un grand pays : le BRESIL dont le mode de vie et les mentalités des habitants sont similaires à ceux
des Africains noirs. Au Brésil actuellement les centres de rehydratation sont tellement bien organisés que non seulement la technique de rehydratation par voie orale y est parfaite mais encore les perfusions sont posées par des femmes qui lors de l'élaboration des centres étaient analphabètes, elles ont reçu une éducation de base mais pas de formation spécifique si ce n'est pour ce qui est des méthodes qu'elles utilisent. Le résultat est extrêmement bon et en dépit du mauvais état nutritionnel, de nombreux enfants, le taux de mortalité est seulement de 2 %.
VIII TRAITEMENT DES DESHYDRATATIONS

A - INTRODUCTION

Le traitement des deshydratations causées par les diarrhées aiguës infectieuses est malaisé en milieu tropical, parfois même impossible dans les zones rurales, parce que l'on ne dispose pas assez:
- de structures sanitaires nécessaires
- de solutés ou de matériels de perfusion
- de personnel médical ou para médical entraîné aux techniques de la rehydratation parentérale.
- ou encore le manque de lit d'hospitalisation fait qu'on accepte dans un service que les malades très graves à tort probablement car ainsi les cas moins sérieux non traités ou mal traités de façon ambulatoire auront bien souvent l'occasion de s'aggraver.

Ce traitement doit être peu couteux et ne présente aucune difficulté technique; il est fondé sur le remplacement rapide: "Hâtez-vous lentement" (Boileau)
de l'eau et des électrolytes perdues dans les selles. Les liquides seront administrés soit par voie parentérale soit par voie orale.

B - LES PRINCIPES GENERAUX DU TRAITEMENT

Buts et moyens de traitement :

But : tout sujet atteint de diarrhée aiguë infectieuse se déshydrate plus ou moins et aura donc besoin
- d'une compensation des pertes d'eau depuis le début de la diarrhée
- d'une correction des troubles électrolytiques et acidobasiques.
- du maintien d'un état normal d'hydratation jusqu'à ce que la diarrhée cesse en remplaçant les pertes dans les selles à mesure qu'elles se produisent encore.
et dans des conditions bien déterminées l'emploi de certains antibiotiques utiles parce qu'ils raccourcissent la durée de la diarrhée.

Les moyens

De nos jours si la déshydratation causée par les diarrhées aiguës infectieuses tient encore une place importante parmi les causes de mortalité en Afrique noire, c'est que le traitement se heurte non seulement aux différents obstacles déjà énumérés dans les pages précédentes mais aussi au grand retard qu'accuse sa mise en train.

La thérapeutique de remplacement doit être pratiquée très vite car le traitement précoce représente trois avantages importants.

- il évite le risque de la mort par déshydratation grave
- il réduit les symptômes associés à un déficit croissant d'eau et d'électrolyte, c'est-à-dire les vomissements, l'anurie, la léthargie ou le coma qui empêchent de continuer à alimenter le malade.
- le traitement nécessaire est plus simple parce qu'il est administré alors que deux mécanismes hémodynamiques importants (soif et fonction rénale) sont encore intacts.

Les techniques de rehydratation par voie buccale répondent bien à cet objectif et présentent cet avantage supplémentaire que les membres de la famille peuvent participer au traitement et sont capables après avoir reçu les instructions nécessaires dispensées par des agents sanitaires d'un réseau de centre de soins de santé primaires ruraux ou périphériques, de le poursuivre à domicile avec l'appui quotidien des centres jusqu'à guérison du malade.

Cette approche réduit au minimum absolu les obstacles au traitement précoce. Elle offre la possibilité d'apprendre aux membres de la famille à le recommencer immédiatement à domicile lors d'un nouvel épisode diarrhéique, ce qui constitue ce qu'on peut attendre de mieux en fait de la précocité du traitement.

La rehydratation par voie parentérale est précieuse en cas de déshydratation grave, ou quand surgissent certains autres problèmes complexes liés à la diarrhée. Dans nos régions africaines en tant que thérapeutique précoce la rehydratation par voie parentérale présente de graves inconvénients. Elle est très couteuse, elle ne peut être administrée que par du personnel qualifié et il n'est pas toujours possible de se procurer les meilleures prépa-
rations; jusqu'à ces dernières années elle a été le seul moyen de traitement des déshydratations en Afrique noire que ce soit au Benin, en Côte d'Ivoire, au Sénégal et au Zaïre.

C - ASPECTS PRATIQUES DU TRAITEMENT

Compensation des pertes :

Estimation des besoins en liquide :

- a domicile:

 sera fonction

 . de l'importance de la diarrhée
 . de l'intensité de la soif
 . de la rapidité d'installation des signes cliniques

- dans les centres de soins de santé et les hôpitaux par:

 . la pesée
 . la mensuration avec calcul du poids idéal et correspondance avec les courbes standards.
 . le bilan ionique sanguin dans la mesure du possible;

à partir de la natiémie.

\[
\text{Na plasmatique normal} \quad \frac{\text{eau total du corps actuel}}{\text{Na plasmatique actuel}} = \frac{\text{eau total du corps normal}}{\text{natiémie normale}}\]

Exemple: pour un sujet de 70 Kg

. eau totale du corps probable 60 % = 42 litres
. natiémie normale : 138 mEq/l
. natiémie actuelle : 175 mEq/l
. eau totale actuelle = X à détenir

\[
\frac{\text{Na plasmatique normal (138 mEq/l)}}{\text{Na plasmatique actuel (175 mEq/l)}} = \frac{X}{42 \text{ l}}
\]
eau totale actuelle : \(X = \frac{138 \times 42}{175} = 33.1 \) l

Estimation du déficit hydrique :
\(42 i - 33.1I = 8.9 \)

2) Compensation :

La rehydratation se fera par voie buccale, le meilleur moyen de traiter la déshydratation légère ou modérée et de prévenir la déshydratation grave. La rehydratation par voie buccale dans la diarrhée aiguë peut être pratiquée au domicile des malades ce qui évite les frais d'hospitalisation et l'utilisation de liquide injectable couteux.

Par contre, la rehydratation par voie intraveineuse est la meilleure forme de traitement quand les malades sont en état de choc et incapables de boire mais elle ne peut être pratiquée que par le personnel médical ou paramédical bien entraîné à cette technique et nécessite aussi une très grande surveillance.

2- Traitement à visée étiologique : antibiotique

Il est conseillé pour conduire correctement le traitement antimicrobien de s'appuyer sur les données de l'antibiogramme.

L'identification du germe et sa sensibilité à certains antibiotiques dans l'état actuel des choses est limitée en Afrique Noire; la coproculture et l'antibiogramme ne sont pas de routine dans les hôpitaux, et sont irréalisables dans les centres ruraux faute d'infrastructure.

Il faut noter aussi que la sensibilité du germe n'est pas seul facteur de choix, d'un médicament, mais aussi la prise et la facilité d'administration qui sont deux facteurs importants en Santé publique. Divers travaux ont été effectués dans divers centres à travers l'Afrique pour déterminer la sensibilité des germes isolés aux antibiotiques tels :
shigelles par BONNARDOT
Salmonelles: par LE NOE
Escherichia coli pathogène par KYELEM

Les résultats ont été les suivants :
- les différents types de Shigella sont sensibles in vitro
 . au chloramphenical
 . à la colimycine
 . à la kanamycine
 . à la streptomycine

- les salmonelles in vitro sont sensibles :
 . à la néomycine
 . à la colimycine
 . chloramphenical
 . à la kanamycine
 . à la streptomycine

- Escherichia Coli :
 . à la gentalline
 . à la Karnamycine
 . à la colimycine
 . à la terramycine
 . à la Néomycine

L'intérêt de ces études résiderait surtout dans le choix des antibiotiques à proposer ultérieurement pour un traitement standard dans les centres de santé pour les diarrhées très sévères qui se prolongent anormalement avec des complications outre la deshydratation.

Il reste bien entendu que l'imprévisibilité de la résistance des bactéries aux médicaments doit être prise en considération, c'est ainsi que le sulfaguanidine (Granidan) largement et systématiquement utilisé dans beaucoup de centres médicaux en Afrique ne peut être retenu. De nombreuses souches de Shigella Flexneri étant résistantes à ce sulfamidé.
On observe heureusement que le vibrio cholérique ne suit pas cet exemple de résistance. Tetracycline et Fanasil conservent une grande activité sur la plupart des souches en vibrio choléraé

3) Modalités d'application

Traitement à domicile :

Il se résume à la rehydratation par voie orale dès l'installation de la diarrhée, et résulte de la physiopathologie de la diarrhée aigue infectieuse et ses conséquences décrites dans les pages précédentes. Il consiste à rendre rapidement au malade l'eau et les seuls que la diarrhée lui a fait perdre en lui administrant par la bouche une solution salée glucosée.

Le matériel :
. un récipient à couvercle pour conserver l'eau
. des récipients bien hermétiques pour le sucre et le sel
. une tasse et une cuillère si possible
. un litre (pour mesure l'eau)

Voir figure:

* Préparation de la solution :

Diverses solutions ont été employées avec succès. Le soluté de remplacement doit comporter de l'eau, du glucose, du potassium et du bicarbonate (pas toujours nécessaire).

L'OMS a récemment mis au point un mélange de sel, de sucre et de bicarbonate tout préparé en sachet qu'il suffit de dissoudre dans un litre d'eau potable, la solution obtenue ne doit pas être bouillie et doit être consommée dans la journée.

La concentration en électrolyte est la suivante:
Fig. — Le nécessaire de réhydratation consiste en une gourde munie d'un bouchon pour conserver l'eau, une tasse assez grande, une boîte de sel et une boîte de sucre. (Reproduit d'après Church, 1972, Tropical Doctor.)

Fig. — Une pincée du pouce et des deux doigts de la main équivaut à 1,5 g. (Reproduit d'après Church, 1972, Tropical Doctor.)

Fig. — Une poignée de sucre des quatre doigts de la main équivaut à 30 g. Une poignée des trois doigts peut suffire. (Reproduit d'après Church, 1972, Tropical Doctor.)
équivaut à 1,5 g
équivaut à 30 g,
• une poignée de sucre des quatre doigts de la main

Glucose
III
H Coz
80
NaCl : 3,5 g
Na H Cez (bicarbonate de sodium) 2,5 g
Clk chlorure de potassium 1,5 g
glucose 20 g
eau 1 litre
ce qui correspond en m Eq/l

Na K Cl H Coz Glucose
90 20 80 30 III

cette préparation exacte du soluté est bien sur impossible pour qui ne dispose pas d'une balance.

Afin de remédier à cette difficulté, des méthodes approximatives utilisables sur le terrain ont été proposées par Morley et Church, mais avec de trop grandes possibilités d'erreur.
• une pincée du pouce et des deux doigts de la main équivaut à 1,5 g
• une poignée de sucre des quatre doigts de la main équivaut à 30 g.

Aussi voit-on avec satisfaction que l'on peut maintenant se procurer des mesurettes qui dosent de façon exacte le glucose, le sodium, le potassium et le bicarbonate de sodium pour un litre d'eau (on peut se procurer ces mesurettes auprès de Teaching Aidds at Low Cost, Institute of child Health 30 Guilfor Street, London WC IN 1 EH). Cout 2 dollars US pour 5 jeux, y compris le transport par avion.

Un autre obstacle à la préparation du soluté oral en milieu tropical peut venir aussi de la difficulté à se procurer du glucose, plus couteux et plus rare que le saccharose.
On sait que dans l'intestin le saccharose est scindé à parts égales en glucose et en fructose. Théoriquement, il suffit donc de donner en saccharose le double de la quantité de glucose nécessaire pour obtenir un soluté satisfaisant soit 40 grammes de saccharose au lieu de 20 g de glucose (22). En pratique clinique le remplacement du glucose par le saccharose a donné satisfaction.

- dans certaines régions, le suc de noix de coco verte constitue une source de potassium peu couteuse 20 ml/Kg par jour chez l'enfant ou 170 ml par litre de selles évacuées chez l'adulte compensant à peu près intégralement la déperdition potassique (104).

- la banane et différents jus de fruits sont aussi très riches en potassium.

En définitive, une telle solution peut toujours être préparée à la demande en mettant dans de l'eau de boisson, du sel de table ordinaire, du bicarbonate de soude (pas toujours obligatoire ni nécessaire) du chlorure de potassium et du sucre de table (saccharose) faute de glucose pur. Elle peut être utilisée sans crainte pour tous les malades ce qui simplifie le traitement des grandes épidémies.

* Modalité d'administration:

Rehydratation initiale:
En général les malades sont conscients et capables de boire. On parvient à les rehydrater en les laissant boire autant qu'ils le veulent; la soif constitue un indice très utile de la quantité de solution à administrer mais il faut parfois insister auprès de ceux chez qui les pertes par les selles sont très rapides pour qu'ils boivent suffisamment.

Le volume de la solution à administrer en moyenne est de 50 à 120 ml/Kg en 4 à 6 H et chez certains adultes il faut atteindre 1000 ml par heure.
Maintien de l'équilibre hydrique:

Pour compenser les déperditions permanentes dans les selles diarrhéiques, la proportion est d'environ 1,5 volume de solution orale pour 1 volume de selle. On peut ainsi contébalancer les pertes intestinales d'eau et d'electrolytes ainsi que les pertes hydriques par élimination urinaire et évaporation, soit plus précisément 100 ml à 200 ml/Kg de soluté par jour jusqu'à cessation de la diarrhée. On peut même atteindre dans les formes un peu plus sévère 15 ml/Kg et par heure.

• Mesures adjuvantes :

Il n'y a aucune raison valable de mettre un diarrhéique à la diète en absence de nausées et de vomissements. Les malades seront autorisés à manger normalement compte tenu de leur âge aussitôt qu'ils en exprimeront le désir. Il n'est pas nécessaire pour reprendre le régime complet d'attendre la fin de la diarrhée. Chez l'enfant, l'allaitement au sein peut être maintenu mais la poursuite de l'allaitement artificiel est souvent néfaste; celui ci sera interrompu pendant la phase aigue de la maladie pour être repris par la suite.

Il n'y a aucun adjuvant du traitement de la diarrhée dont l'efficacité ait été prouvée en particulier les mixtures dites antidiarrhéiques.

• L'appréciation d'une rehydratation correcte:

Elle est très simple au cours du traitement à domicile. Elle se limite à la constatation

. de la disparition du pli cutané
. il arrive que l'excès de liquide provoque un oedème des paupières (sans danger) dans ce cas on arrête l'administration de la solution).
. de l'abolition de la sensation de soif malgré la persistance de la diarrhée manifesté par le petit enfant par arrêt des pleurs.
. sentiment de bien-être éprouvé par le malade.
• Les limitations du traitement à domicile:
 - Les malades atteints de déshydratation grave
 - Les malades qui ne peuvent pas boire parce qu'ils sont fatigués ou abattus ou dans le coma.
 - Les malades atteints de vomissements graves et prolongés environ 3 % des malades atteints de diarrhées aiguës présentent des troubles graves de l'absorption du glucose. La rehydratation par voie buccale provoque chez eux une augmentation notable du volume des selles qui contiennent de grande quantité de glucose et la déshydratation s'aggrave.
 - Les malades qui présentent une oligurie ou une anurie prolongée d'installation antérieure à la diarrhée.

dans les centres de soins de santé primaires ruraux ou périphériques:

Ces centres devraient comporter un secteur de rehydratation, les agents sanitaires accueilleront les malades et les mères qui ont un enfant déshydraté, leur apprendrons avec les ustensiles les plus usuels à préparer la solution à se rehydrater et à rehydrater leur enfant.

On exhortera la mère à procéder de même chez elle chaque fois que son enfant contractera la diarrhée ou qu'il risquera de se déshydrater pour une raison quelconque par exemple en cas de forte fièvre, en prenant bien soin de souligner que tout ce qui est donné par la bouche ne ressort pas sous forme de selles. Une leçon que la mère comprendra mieux quand elle aura vu l'un de ses enfants guéri grâce à ses propres efforts. Il faudrait aussi profiter de la situation pour leur faire remarquer les premiers signes cliniques de déshydratation et dans quelle mesure il est nécessaire de conduire le malade dans un centre de soins de santé où une autre voie de rehydratation sera choisie.

La deuxième activité des agents sanitaires de ces centres devrait consister à prendre en charge les malades qui n'auraient pas pu bénéficier de la rehydratation par voie orale à domicile du fait de leur état:
 - Conscients mais fatigués pour boire
 - Ceux qui au cours de la rehydratation par voie orale à domicile ont vomi avec une diarrhée persistante.
Dans ces cas, le liquide de rehydratation peut être administré par sonde naso-gastrique goutte à goutte et en continue. pour une deshydratation légère ou modérée à raison de 15 à 25 ml/Kg à l'heure.

Une attention particulière est à retenir pour les enfants de trés bas âge. La bonne adaptation sera alors confirmée par un nouvel examen minutieux.

- pour le maintien de l'équilibre hydrique:

- pour les adultes:

On administrera une quantité d'environ 700 ml par heure pendant les premières, quatre à six heures suivant la rehydratation. Le volume pourra être moindre dans le cas plus bénin 300 ml par heure ou supérieur dans les cas sévères 1200 ml par heure.

Pendant cette période le volume de matières rejetées par chaque sujet apparaîtra clairement. Chez les adultes atteints de diarrhée profuse (dans le cas de choléra par exemple) le recours à un "lis de cholérique) qui permet de recueillir et de mesurer séparément les selles et les urines aide à déterminer la quantité nécessaire pour le maintien de la deshydratation.

La prise horaire au cours de périodes suivantes de quatre heures correspondra à une fois et demi le volume des déjections de la période de quatre heures précédentes.

On arrêtera l'administration du liquide quand la diarrhée aura cessé.

- pour les enfants:

Le volume des selles émises au cours des premières 24 H de traitement se situe entre 50 et 300 ml par Kg. S'y ajoutent en moyenne 100 ml/Kg/J. d'éliminé par évaporation et par diurèse.
En pratique, il est très difficile de mesurer avec précision les pertes fécales chez les petits enfants ce qui oblige à se fier davantage à la minutie des observations cliniques pour déterminer les besoins en liquide.

On commence le traitement d'entretien à raison de 5 à 15 ml/Kg par heure. Puis comme pour les adultes, la vitesse d'administration pour une période déterminée correspondant à environ une fois et demie le volume des émissions de la période précédente.

A mesure que la quantité des selles décroit et que les matières se raffermissent, la solution orale pourra être donnée en alternance avec l'allaitement maternel pour les plus jeunes. Quant aux plus grands, la solution orale pourra être mélangée à de la bouillie (à base des produits locaux) dont voici la composition type :

- céréales : mil, sorgo, maïs
- huite de palme
- farine de poisson
LA BOUILLIE

<table>
<thead>
<tr>
<th></th>
<th>QUANTITÉ</th>
<th>CALORIES</th>
<th>PROTEINES/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Série A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mil cereale (sorgo) (maïs)</td>
<td>80 g</td>
<td>334</td>
<td>9</td>
</tr>
<tr>
<td>huile de Palme</td>
<td>10 g</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>farine de poisson</td>
<td>10 g</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td>ration de</td>
<td>110 g</td>
<td>448 cal</td>
<td>IE P/G</td>
</tr>
<tr>
<td>Série B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mil cereale (sorgo) (maïs)</td>
<td>80 g</td>
<td>288</td>
<td>8</td>
</tr>
<tr>
<td>huile de palme</td>
<td>10 g</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>lait en poudre</td>
<td>20 g</td>
<td>72</td>
<td>7</td>
</tr>
<tr>
<td>ration de</td>
<td>110 g</td>
<td>448 cal</td>
<td>15 P/G</td>
</tr>
</tbody>
</table>

Composition de la bouillie d'après Docteur GATO MLL nutritionniste OMS.
<table>
<thead>
<tr>
<th></th>
<th>Cal/g</th>
<th>Protéines g/100g</th>
<th>lipide g/100g</th>
<th>glucide G/</th>
<th>Vit A ou Provitamine VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>mil</td>
<td>3,4</td>
<td>8 à 10</td>
<td>1-2</td>
<td>75</td>
<td>traces</td>
</tr>
<tr>
<td>sorgo</td>
<td>3,4</td>
<td>8 à 10</td>
<td>2-3</td>
<td>75</td>
<td>traces</td>
</tr>
<tr>
<td>maïs</td>
<td>3,6</td>
<td>8 à 10</td>
<td>1-2</td>
<td>75 à 80</td>
<td>traces</td>
</tr>
<tr>
<td>Huile de Palme</td>
<td>8,8</td>
<td>0</td>
<td>99</td>
<td>0,3</td>
<td>46 à 70.000</td>
</tr>
<tr>
<td>farine de poisson</td>
<td>3,6</td>
<td>60</td>
<td>6-7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lait écrémé en poudre</td>
<td>3,6</td>
<td>30</td>
<td>0,4</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>CSM</td>
<td>3,6</td>
<td>20</td>
<td>6</td>
<td>60</td>
<td>1940</td>
</tr>
</tbody>
</table>

- Composition des éléments utilisés par le projet Ligue des sociétés de la Croix Rouge.

CSM: maïs, sorgo, lait écrémé, vitamine.

Thèse: Mamadou Soumaël (95)
mais en ce qui nous concerne la série A serait plus acceptable du fait que certains enfants n'étant pas habitués au lait en poudre feraient une intolérance qui aggraverait leur état de déshydratation, ensuite la farine de poisson serait plus facile à se procurer que le lait en poudre. En plus, la physiologie nous a appris que les acides aminés, les polypeptides stimulent l'absorption du sodium et apportent un nombre d'éléments au métabolisme de l'enfant.

Ce complément alimentaire apporté à l'enfant diarrhéique et déshydraté nous permet de faire la remarque sur l'existence du cycle diarrhée-malnutrition.

- Cycle diarrhée-malnutrition:

L'étroite association de la diarrhée et de la malnutrition n'est plus à démontrer. Toutes les deux séwissent dans les environnements socio-économiques et culturels similaires et en s'entretenant l'un l'autre. Tel est notre cas.

D'une part l'incidence des diarrhées graves est élevée chez les enfants qui souffrent de malnutrition et provoque une forte mortalité.

D'autre part, les maladies diarrhéiques sont probablement de toutes les affections de l'enfant, celles qui sont le plus responsables de malnutrition pour trois raisons essentielles:

- jeune imposé par les mères
- anorexie
- malabsorption

CONCLUSION :

Il apparaît que quand le choléra et la diarrhée infantile ont été traités de cette manière par du personnel expérimenté, il n'y a eu pratiquement aucune mortalité et la nécessité d'une rehydratation par voie intraveineuse a été réduite de 0 à 90 %.
Cette pratique utilisée dans de pires conditions possibles pour soigner les
refugiés de Bangladech atteints du choléra, le traitement étant administré le
plus souvent par les membres de la famille, la mortalité n'a été que de 3 %
et la moitié des décès sont survenus avant que la rehydradation ait pu être
entreprise (117).

Des études de ce type sont en cours ou sont déjà terminées dans les
pays suivants:
 • Liberia, Nigéria en Afrique noire
 • Costa-Rica, Egypte, El Salvador, Guatemala, Inde,
 • Iran, Philippines, République démocratique populaire du Laos et Turquie.
Leurs résultats permettent de convaincre les administrations sanitaires
locales de la simplicité et de l'efficacité de cette méthode.

• Les centres de soins de santé ruraux périphériques et urbains, et les
autres formes de deshydratation.

Introduction :

La rehydratation par voie buccale a été utilisée avec succès
pour traiter des milliers d'épisodes diarrhéiques modérés et bénins chez
l'enfant et chez l'adulte dans de nombreuses parties du monde et son utilité
a été largement démontrée dans plusieurs rapports d'études. Mais il demeure
un grand nombre de cas réfractaires à ce mode de traitement pour qui seule la
rehydratation par voie parentérale est indiquée.

- Les indications.

 • Les malades atteints de deshydration grave souvent accompagnée de
collapsus cardiovasculaire
 • les malades qui présentent une oligurie ou une anurie prolongée
 • deshydratation accompagnée de coma et convulsion.
 • les malades atteints de vomissements graves et prolongés.
 • environ 30 % des malades atteints de diarrhée aigue présentant des trou-
bles graves de l'absorption du glucose de sodium et d'eau, ce que l'on observe
lorsqu'il existe une destruction des cellules de l'épithelium. La présence dans les selles de plus de 50 m par litre de sucres réducteurs et un pH inférieur à 5 doivent faire discuter cette possibilité, la rehydratation par voie buccale provoque chez eux une augmentation notable du volume des selles.

- Mise en route du traitement:

 les voies d'abord veineuses

- en cas de déshydratation sans collapsus, préparer le matériel de perfusion, choisir le lieu d'abord veineux, assurer la contention de l'enfant, l'habileté de certains infirmiers ne dispense pas le médecin de surveiller en y participant au besoin, les détails matériels de la mise en route d'une perfusion.

 la ponction d'une veine superficielle

- veine du dos de la main
- basilique
- la cephalique
- les veines epicraniennes chez l'enfant
- saphène interne ou externe.

Utiliser un dispositif épicanien avec aiguille de 7/10° de mm pour l'enfant.

- en cas de collapsus: l'urgence est de trouver une veine introuvable,
 . aborder un tros trou veineux avec une aiguille I M 8/10° 10/10° mm (faute de cathelon ou de cathéter)
 . veine femorale
 . le jugulaire interne à la partie haute du cou.
 . sous-clavière si l'on est entraîné à cette technique (cas contraire s'abstenir)

Ces voies profondes doivent être provisoires. Il est possible d'aborder ensuite une veine superficielle après la première phase de rehydratation.
- Les solutés requis :

- **soluté glucose**: isotonique à 5% : pour certains auteurs du fait de la quantité totale de liquide à administrer, les solutés glucosés hypertoniques sont à prescrire pour éviter une surcharge osmotique.

Pour ESTRADET J.M. passer que du glucose à 5% conduit à injecter une quantité de calories tout à fait insuffisants.

- **soluté glucosé hypertonique**

- **soluté salé isotonique contenant 154 M eq/l de chlore et de sodium**

- **soluté salé hypertonique à 20% qui permettent le cas échéant de fournir la dose de NaCl en la diluant dans le soluté glucosé utilisé comme vecteur.**

- **soluté bicarbonaté isotonique à 14 g/l apportent environ 167 mEq de Na et 167 mEq de Co2 H au litre.**

- un sel de potassium : tel que le chlorure de potassium à 10% en ampoule de 10 ml qui apportent 1 g de KCl

- dans la mesure du possible:
 . plasma frais au citrate conservé désséché
 . albumine humaine: chose rare en Afrique noire
 . solutés à grosses molécules:
 . plasméon
 . plasma ccl
 . plasmagel
 . la solution au lactate de Ringer

(soluté injectable de Hartmann B RC et USP)
tension artérielle redevenue normale compte tenu des chiffres habituels du malade.

- le pouls

- la recoloration des extrêmités et la chaleur segmentaire.

Il faut toujours associer dans la mesure du possible une bonne oxygenothérapie.

La deuxième phase de rehydratation se fera en raison de 60 ml/Kg en deux heures:

- soit avec du soluté glucosé à 5 g + 38 de NaCl / 18 de gluconate de calcium pour cent, cette fois-ci pour éviter de provoquer une glycosémie avec polyficrémie osmotique.

- soit avec la solution antidiarrhéique.

En absence de collapsus.

Si la déshydratation est modérée ou légère, le retard hydro-electrolytique sera rattrapé en 24 heures et réparti uniformément en plus de la compensation normale des pertes comme pour le maintien de l'équilibre hydrosodé.

Le maintien de l'équilibre hydrosodé:

Pour les malades ne présentant pas de troubles de l'absorption du glucose, du sodium et de l'eau et ayant récupéré une bonne conscience sans vomissement abondant, dans un premier temps, on donnera le volume nécessaire pour conserver normaux hydratation et le poids corporel. Ce volume est approximativement égal à celui des déjections intestinales en plus des besoins de base, liquide comportant soluté glucosé 5 g pour 100 + chlorure de sodium 3 g/l et chlorure de potassium 2 g/l.

En outre, il faut donner à boire à volonté, la solution de préparation pour la rehydratation par voie orale.
Dans un deuxième temps, remplacer la rehydratation parentérale par une rehydratation orale dès que possible avec les mêmes instructions que auparavant (rehydratation orale).

Dans un troisième temps, reintroduction de l'alimentation dès que possible.

pour les malades présentant des troubles de l'absorption d'eau, de sodium et de sucre, l'équilibre hydroélectrolytique sera maintenu par un volume liquidien égal à la somme.

des besoins de base environnement près de la neutralité thermique, ventilation normale sans fièvre : 20 ml à 25 ml/Kg/J
deficit à combler : égal à l'élimination fécale
si le malade est fébrile il faut ajouter un litre par degré de plus au dessus de 38 °. Cet apport liquidien doit comporter : des glucides, des lipides et des protéines sans oublier des vitamines et les oligo-éléments si possible.

Nous ne pouvons en aucun cas donner ici un schéma standardisé applicable pour tous, la réanimation hydroélectrolytique est personnalisée d'où la nécessité d'une surveillance minutieuse au cours de la rehydratation parentérale et de la présence d'un médecin pour les ajustements.

La rehydratation orale ne pourra être entreprise qu’après les 48 à 72 h (temps de régénération des cellules épithéliales intestinales) et avec prudence.

- chez l'enfant et le nourrisson :

Si la correction approximative des troubles hydroélectrolytiques de l'adulte se passe en général sans grands problèmes, il est recommandé de procéder avec précision à celle du nourrisson et de l'enfant; car ici le terrain est très fragile, le tubule rénal fonctionne dans une fourchette très étroite d'où les difficultés dans l'élimination d'eau libre (dilution) en cas de surcharge hydrique et d'osmoïe (concentration) en cas de surcharge osmolique.
En cas de collapsus cardiovasculaire :

Réduction du collapsus :
- pousser rapidement à la seringue
 - le plasma à raison de 70 ml/Kg en 10 à 20 minute
 - soit d'autres solutés contenant au moins 3 g NaCl par litre, à
 raison de:
 . 50 ml si poids inférieur à 5 Kg
 . 150 ml entre 5 et 9 Kg
 . 250 ml entre 10 et 14 Kg
 . 300 ml si poids supérieur à 15 Kg
- puis continuer à injecter intraveineusement:
 . soit du plasma 20 ml/Kg de poids
 . soit de l'albumine à 5 g/100 ml = 20 ml/Kg
 . soit du soluté glucosé à 10 g pour cent avec 4,5 g
 de NaCl par litre à raison de 40 ml/Kg.

Cette phase a une durée de 30 à 40 minutes. Ces doses suffisent
habituellement à réduire le collapsus et l'on peut continuer la phase de
rehydratation à un rythme de perfusion plus lent.

Il est très bénéfique d'associer une oxygenotherapie.

Poursuite de la rehydratation:

Après la connaissance du poids de l'enfant on fera une déduction
de sa surface corporelle; en absence d'abaque on utilisera la formule

\[
S = \frac{4P + 7}{P + 90}
\]

ou P est exprimé en Kg et S en M².
Le reste de la rehydratation se fera comme chez l'adulte en 48 H. Les 2/3 du retard hydroélectrolytique lors des premières 24 H dont 1/3 pendant les 8 premières heures.

Il faut assurer les apports normaux d'entretien. Ce volume d'eau d'entretien est égal à 1500 ml par M² il est majoré en cas de fièvre de I/5 par degré au dessus de 37° C ou de 200 ml/m² et par degré.

Il faut compenser les pertes anormales, fécales ou par vomissement, un volume de perfusion pour le même volume de perte.

Ainsi une fois le besoin hydrique journalier calculé, on retranche celui qui a été injecté éventuellement dans la première étape du traitement pour lever le collapsus.

Composition du liquide de perfusion:

Il est recommandé de perfuser dès la réduction du collapsus la solution suivante:

SOLUTE GLUCOSE 10 g pour cept contenant par litre
- NaCl 2 g (35 mEq)
- KCl 1,5 g (20 mEq)
- Gluconate de Ca 1 g (5mEq)
- Chlorure de Mg si possible 0,5 g (5mEq)

Tout le long de la rehydratation il est bon de s'assurer que le glycosie reste nulle ou faible. Dans le cas contraire remplacer le soluté glucosé à 10 g pour cent par du soluté glucosé à 5 g pour cent.

Il faut prescrire avec soin le nombre de gouttes par minutes. Une formule simple permet de la déterminer:

\[N = \frac{Q}{3 \times H} \]

N : nombre de gouttes par minute
Q : quantité de liquide (en ml) à passer dans le temps H
H : temps de perfusion en heure
Prescrire la composition de chaque flacon (inscrire sur le flacon)

Maintien de l'équilibre hydroélectrolytique.

En théorie elle débute déjà au cours de la poursuite de la rehydratation mais en pratique correspond à la phase de convalescence.

Pour les malades ne présentant pas de lésions histologiques entrainant des troubles de l'absorption du glucose du Na et de l'eau, la méthodologie ne diffère en rien à celle de l'adulte et celle des enfants dans le chapitre précédent, mais il faut seulement spécifier ici que les nourrissons et les tout petits enfants peuvent être mis à l'allaitement maternel et au liquide de rehydratation par voie orale ou nasogastrique à raison de 100 ml/Kg/J et en essayant de diminuer par la même occasion des apports par voie parentérale.

Dès que les selles se raffermissent donner de la bouillie à base de produits locaux (décrits dans les pages précédentes)

Pour les malades ayant des troubles de l'absorption intestinale:

mettre l'intestin au repos pendant le temps de régénération. Assurer l'équilibre hydroélectrolytique par voie parentérale par apport glucidique protéique. Les solutions lipidiques faisant défaut la ration calorique ne sera apporter qu'en augmentant les concentrations en sucre.

En cas d'absence de soluté protidique on peut utiliser le plasma citraté conservé desséché qui contient 50 g de protéine par litre. Les besoins de base en protéine sont environ de 0,60 à 1g/Kg/J; lors de la la croissance ils peuvent atteindre 3g/Kg/J.

En absence de collapsus:

Le mode de traitement est presque identique à ceux du chapitre précédent c'est à dire à celui du maintien de l'équilibre hydroélectrolytique chez les malades ayant des troubles de l'absorption mais ici il faut ajouter le retard hydroélectrolytique à compenser en 24 H et uniformément réparti.
Le traitement médicamenteux:

L'indication des sulfamides et des antibiotiques doit être faite avec discernement et discutée pour:
- les diarrhées qui durent plus de deux ou trois jours
- les états diarrhéiques qui présentent des signes de gravité, comme l'hyperthermie, selles muqueuses et sanglantes.

L'indication des antibiotiques portée, se pose le problème du choix du médicament. Dans la mesure du possible ce choix doit être orienté par les résultats de la coproculture et l'antibiogramme. Quand on ne possède pas ces éléments, on essayera de procéder comme suit.

- si la diarrhée est de type choléiforme il s'agit probablement d'un germe qui agit par sécrétion de toxines. Il vaut mieux utiliser un agent anti-infectieux qui ne traverse pas la muqueuse intestinale.
 - colistine
 - kanamycine
 - streptomycine

- si les selles sont muqueuses, sanglantes, il s'agit probablement d'un germe qui pénètre dans les cellules de la paroi intestinale. Il faut choisir un antibiotique absorbé par les enterocytes:
 - triméthoprime
 - sulfaméthoxazole
 - céphalexine

Le traitement à l'hôpital:

En principe, si la hiérarchie thérapeutique a été respectée, il ne reviendra à l'hôpital qu'une infime partie des déshydratés. Cela engorgerait moins les hôpitaux qui déjà sont débordés par les autres types de maladies.
Dans un secteur le moins intensif qui leur serait destiné, les deshydratés de type particulier pourront bénéficier d'une rehydratation plus appropriée et plus précise dont nous ne donnerons ici qu'un petit exemple.

- En cas de collapsus la réduction du collapsus ne diffère en rien de celle des centres de soins de santé ruraux ou périphériques

- La rehydratation parentérale :
 Le schéma thérapeutique est toujours valable mais à présent on aura le bénéfice des examens biologiques pour faire un bon ajustement.
 - La deshydratation provoquée par la diarrhée peut être :
 - hypernatémiée : Na supérieur à 150 mEq/l
 - isonatémiée : Na entre 132 et 150 mEq/l

Nous prendrons pour exemple un enfant de 8 Kg présentant une deshydratation par une diarrhée aigee infectieuse avec collapsus (donc déficit au moins égal à 10 % du poids du corps).

La réduction du collapsus se fera donc par injection de soluté glucosé à 10 g pour cent ml additionné de Nacl 4,5 g par litre (75 m Moles/l) à dose de 40 ml/Kg.

- volume injecté: 8 Kg x 40 ml/Kg = 320 ml
- Na injecté: 0,320 l X 75 = 24 mEq
- durée 40 minute.

Si la deshydratation est normonatémiée:

a) calcul du volume total dans 24 heures

La surface corporelle est égale à

\[
\frac{4 \times 8 + 7}{8 + 90} = 0,43 \text{ m}^2
\]

- correction du déficit : 8 Kg à 100 ml/Kg = 800 ml
- entretien: 1500 ml X 0,43 = 650 ml
- perte anormale environ 10 ml/Kg = 8 x 10 = 80 ml
Volume total des 24 H = 1530 ml
d'où on retranche bien entendu le volume injecté (éventuellement au cours de la phase de réduction du collapsus)

\[1530 - 320 = 1200 \text{ ml environ} \]

La moitié de ce volume est injecté dans les 8 heures, et le reste dans les 16 heures suivantes.

b) composition du liquide de perfusion:

On propose ici la solution glucosé isotonique 5 g pour cent bien que LESTRADET soit contre. Pour éviter cette fois de provoquer une hyperglycémie qui entrainera une glycosurie avec polyurie osmotique et perte accrue de Na ; tout au long de la rehydratation, on s'assurera que la glycosemie est nulle ou faible.

- le déficit sodé sera en moyenne 10-12 m Eq/Kg. La ration d'entretien 3 mEq/Kg peut être ici négligée ainsi que le Na des pertes anormales. La posologie sodée pour les premières 24 heures s'établit donc ainsi :

\[8 \text{ Kg} \times 12 \text{ mEq/Kg} = 96 \text{ mEq} \]

dont on retranchera la dose injectée pour la réduction du collapsus.

\[96 - 24 = 72 \text{ mEq de Na} \]

- Cette dose de Na peut être donnée sous forme de chlorure de Na : 72 m moles de NaCl soit :

\[4,20 \text{ g pour } 1200 \text{ ml} : \text{ soit } 3,5 \text{ g par litre} \]

soit répartie en

\[\frac{3}{4} \text{ chlorure de Na : } 54 \text{ m moles = } 3 \text{ g NaCl} \]

\[\frac{1}{4} \text{ de Bicarbonate} : 18 \text{ m moles = } 1,5 \text{ g Na CO}_3 \text{H} \]
Dès l'apparition de la diurèse, on ajoute Kcl 3 m moles /Kg et par 24 heures, soit 24 m moles ou 1,8 g Kcl pour 1200 ml, soit 20 mEq par litre.

On sait que la concentration K dans le liquide de perfusion veineuse ne doit pas excéder 40 mEq par litre et que le débit doit être inférieur à 4 mEq par Kg et par jour ou 4 mEq par heure. Si le déficit en K atteint 10 mEq/Kg, cette supplémentation devra donc être prolongée 3 à 4 jours pour le combler.

- En présence d'une acidose profonde avec pH sanguin inférieur à 7,10 et CO₂ total inférieur à 10 mEq/l, la proportion du bicarbonate dans le perfusat est porté à 1/3 du total des ions. Le besoin théorique d'ion bicarbonate peut être calculé afin de diminuer de moitié le déficit de base de la façon suivante :

\[
\frac{(1 \text{BE}) \times 0,6 \times \text{poids du corps}}{2}
\]

BE : Base excess.

Des fois, pour alléger les calculs, le volume nécessaire de liquide de perfusion ayant été calculé, la composition du liquide de perfusion d'une déshydratation normonatémière peut être donnée par la formule simplifiée suivante:

dite " 7.2.I."

1. 7 partie solution glucosée à 5 pour cent
2. 2 partie soluté NaCl à 0,9 g pour 100 ml
- 1 partie soluté Na₂CO₃ à 1,4 g pour 100 ml
et quand la diurèse est apparue ajouter Kcl 20 m mole par titre.

Au début du deuxième jour, le déficit hydrosodé doit être comblé.

Un nouveau bilan de l'enfant est alors établi en reprenant point par point l'analyse des paramètres précédemment exposés.

Le poids de l'enfant doit aussi augmenter de 7 à 9 pour cent. La perfusion veineuse est nécessaire pour assurer les apports d'entretien, compenser les pertes anormales si la diarrhée se poursuit et éviter la réapparition du déficit hydrosodé.
Le volume du liquide est calculé comme suit dans notre exemple d'une déshydratation normonatiémique d'un enfant de 8 Kg et 0,43 m2 de surface.

- besoin d'entretien : $1500 \text{ ml/m}^2 \times 0,43 = 645 \text{ ml}$

- perte anormale par diarrhée environ 10 ml/Kg
 $8 \times 10 = 80 \text{ ml}$

- total : 725 ml à répartir également sur les 24 heures soit 30 ml par heure

La composition du liquide doit assurer les apports suivants:

<table>
<thead>
<tr>
<th></th>
<th>Na</th>
<th>K(mEq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>entretien pour 0,43 m2</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>pertes par 80 ml de diarrhée</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>21</td>
<td>20</td>
</tr>
</tbody>
</table>

Le perfusat est donc constitué :

- soluté glucosé 5 pour cent : 725 ml
- NaCl = 21 MEq = 1,20 g
- KCl = 20 mEq = 1,50 g

l'apport K est égal à 2,5 MEq/Kg

La précision du calcul a cette fois moins d'intérêt car l'enfant généralement commence à boire, souvent dès la fin de la première journée. Si le débit de la perfusion est satisfaisant, les volumes ingérés doivent rester minimes. Sinon, ils doivent être déduits approximativement du volume du liquide à injecter. On donne d'abord de petites quantités fréquemment séparées de solution de glucose-electrolytés ou solution de préparation pour rehydratation orale (voir chapitre).

La convalescence s'annonce quand l'enfant devient capable d'absorber liquide et nutriment sans aggravation de sa diarrhée.

Si la déshydratation est hypernatiémique, natiémie supérieure à 150 mEq par litre, les risques de collapsus vasculaire sont plus faibles et tardifs. Les risques sont surtout neurologiques : coma, convulsion, épanchement sous-dural et risques d'oedème cérébral quand à la faveur de la rehydratation, la natiémie s'abaisse trop rapidement. C'est dans ces rehydratation hypernatiémiques qu'on observe habituellement une hypo-
calcémie qui accroit d'auvant le risque de crises convulsives.

Pour ralentir les variations de l'osmolarité, la phase de rehydratation doit être ici étalée sur 48 heures ceci d'autant mieux que le risque vasculaire est moindre.

appliqué à notre exemple d'un enfant de 8 Kg avec une chute pondérale 10% les calculs donnent les résultats suivants:

- volume du perfusat en 24 heures,
 I/2 correction du déficit.
 8 Kg x 100 ml x 1/2 = 400 ml
 entretien : 0,43 m² x 1500 = 650 ml
 pertes anormales : 8 Kg x 10 ml/Kg = 80 ml

 TOTAL : 1130 ml

- Les déficits électrolytiques sont faibles:
 - Na: 2 à 5 mEq/Kg en moyenne 3 mEq/Kg
 - K: 0 à 4 mEq/Kg en moyenne 2 mEq/Kg

du même ordre de grandeur, que les apports électrolytiques quotidiens d'entretien 3 à 5 mEq/Kg

Au total le perfusat de 24 heures est constitué par:
- 1130 ml de soluté glucosé à 5%
- Na : 4 m moles par Kg soit 32 m Moles = 2 g
- Kcl : 4 m moles par Kg soit 32 m moles
- gluconate de ca 10% : 20 m soit 180 mg de calcium.

Dont il faut retrancher éventuellement pour le premier jour les quantités injectées lors de la réduction du collapsus soit: 320 ml et 24 mEq de Na

Cette perfusion est injectée uniformément sur le nycthémère et prolongée le lendemain, en surveillant étroitement l'évolution clinique, l'état de conscience et la régression de signes neurologiques.
Pour la phase de convalescence la technique thérapeutique est la même qu'au cours des circonstances précédemment décrites.

Pour toutes les formes graves un facteur important est à retenir en Afrique: l'influence du climat. Durant la période humide et chaude on note aussi bien en ville que dans les zones rurales un accroissement notable des diarrhées et des déshydratations. L'expérience apprend qu'au moment des tornades, ces violents orages qui se déclenchent brutalement sous les tropiques, le nombre d'enfants qui meurent chaque jour triple en dehors des accidents de coup de chaleur. Aucune étude précise n'a été faite encore pour savoir quels étaient les désordres biologiques de cet état et quelle était la cause.

Une conséquence pratique de ces constatations serait le placement de ces enfants (en absence de salle climatisée) en ambiance près de la neutralité thermique. Un dispositif ingénieux et efficace est réalisé à l'aide d'un drap tendu verticalement sur un cadre à un mètre de côté environ qui est mouillé en permanence car il trempe par ses deux extrémités roulées en haut et en bas dans deux bacs remplis d'eau. Ce dispositif est placé entre le lit de l'enfant et un ventilateur dont la mise en marche envoie de l'air frais et humide. Mais il faut veiller à ne pas refroidir l'enfant.

Les déshydratés de type particulier:
- déshydratation des femmes en cours de grossesse
- déshydratation chez des sujets en anurie prolongée
- déshydratation des insuffisants rénaux
- persistance ou réapparition de la déshydratation d'une hypovolémie en état de choc.
- les déshydratations associées au Coma non regressif.

Doivent être dirigés vers les services plus spécialisés au sein de l'hôpital.
D - INDICES D'APPRECIATION D'UNE REHYDRATATION CORRECTE

Après rehydratation la compensation correcte des pertes liquidiennes sera évaluée en combinant au lit du malade plusieurs méthodes simples. En pratique courante on devrait les utiliser toutes.

1) Retour du pouls à la normale (force et rythme). Le rythme du pouls reviendra au dessous de 90/mm chez l'adulte, de 100 chez l'enfant et il aura repris toute son amplitude. Si la correction de la tension artérielle a des valeurs pour apprécier l'amendement du choc, elle ne permet pas de déterminer si la rehydratation est achevée, car le remplacement de la moitié du liquide manquant ou même moins suffit à la rétablir.

2) Sentiment de bien être éprouvé par le malade chez qui cyanose, crampes musculaires, nausées et vomissements ont disparu.

3) Reprise pondérale: après une déshydratation sévère, la reprise du poids consécutive à la rehydratation doit être de l'ordre de 10 % il s'agit là d'un indice particulièrement utile chez le jeune enfant.

4) retour à la plénitude normale des veines jugulaires.

5) reprise d'une diurèse normale. Elle se produit généralement 12 à 24 heures après la rehydratation initiale.

Mais les enfants en état de stupor ou de coma au début du traitement peuvent ne pas récupérer complètement pendant 12 à 24 heures malgré une bonne rehydratation.
E - LA SURVEILLANCE

Tout malade dehydraté en rehydratation parentérale doit être régulièrement réévalué pour éviter certaines complications.

- oedème et prise de poids excessive; il suffit de réduire le volume de liquide administré et de passer à la voie orale dans tous les cas ou celle-ci est possible.

- persistance des nausées ou vomissements, pouvant tenir: soit à une acidose à une hypotolémie non corrigée,

soit à un début d’hyperhydratation intracellulaire.

- hypokaliémie: elle peut entraîner une distension abdominale, un paralytique (pouvant retarder l’équilibre hydroélectrolytique par voie orale) une arythmie et de l’asthénie/

L’hypoglycémie se voit chez un petit nombre d’enfants et d’adulte qui ne reçoivent pas de glucose, elle est une cause importante de crises brutales.

- convulsions:

 . avant perfusion: ces convulsions habituellement dues à des dehydratations intracellulaires par hypernatiémie, sont assez rebelles aux anticonvulsivants usuels mais aident à la rehydratation progressive. Leur prolongation au delà des premières heures de rehydratation conduit à chercher une complication vasculaire ou une erreur de rehydratation.

 . sans perfusion: elles sont presque toujours la conséquence d’une erreur thérapeutique, volume de perfusion excessif et administré à un rythme trop rapide avec teneur trop faible en sodium.

Dans ce cas il faut rapidement injecter une solution hypertonique (Manitol au serum salé hypertonique) puis faire cesser les convulsions par:

 . barbituriques: 3 à 5 mg/Kg en injection intramusculaire

 . le diazépam (Valium R) 0,1 à 0,2 mg/Kg en intramusculaire, l’injection intraveineuse n’est pas recommandée en absence de matériel de ventilation.

- oedème aigu du poumon.
IX - PREVENTION DES DESHYDRATATIONS CAUSEES PAR LES DIARRHEES AIGUES INFECTIEUSES

Dans les pays en voie de développement plus du tiers des lits pour enfants sont occupés par des cas de diarrhées aigues avec deshydratation auxquels on administre une antibiothérapie et une rehydratation parentérale très couteuses qui grèvent lourdement les maigres budgets de santé de ces pays sans parvenir à changer le taux de mortalité.

Depuis qu'on a mis au point une solution de rehydratation par voie buccale on est en mesure d'entreprendre immédiatement un programme visant à réduire la mortalité due aux maladies diarrhéiques aigues tout en continuant à travailler à la réalisation de l'objectif à long terme que constituent leur prévention et leur endiguement.

A - PREVENTION SPECIFIQUE PORTANT SUR LES GERMES:

- Vaccinations:

L'éradication des diarrhées infectieuses par les vaccinations seules n'est pas possible du fait de la multiplicité des serotypes, de beaucoup de souches microbiennes et que par ailleurs il n'existe pas actuellement de vaccin contre beaucoup de germes incriminés dans les diarrhées aigues infectieuses. Mais il faut intensifier la campagne de vaccination pour celles qui existent déjà.

- Dépistage des porteurs de germes et surveillance des convalescents:

Dans l'état actuel des choses, les moyens dont disposent les responsables sanitaires en Afrique, le dépistage de porteurs de germes et la surveillance des convalescents sont très difficilement réalisables sur une large échelle.
Ils doivent néanmoins être intégrés comme objectifs non négligeables dans un programme de développement sanitaire à long terme. En absence d'une surveillance régulière des études ou des enquêtes spéciales peuvent apporter des informations sur la prévalence de différents agents étiologiques en un endroit donné.

B - PREVENTION NON SPECIFIQUE:

1) **Amélioration du pronostic des diarrhées aiguës infectieuses:**

Le pronostic des diarrhées aiguës infectieuses est beaucoup moins fonction de son étiologie que des perturbations hydroélectrolytiques qu'elles engendrent souvent d'où la nécessité :
- de pourvoir tous les centres de santé, les PMI et les hôpitaux d'unité de rehydratation aussi bien en milieu rural qu'en milieu urbain et de les équiper en personnel compétent.
- d'enseigner à la mère de famille comment reconnaître et soigner à domicile un enfant légèrement déshydraté et quand le conduire au centre de santé.
- De veiller aussi à la préparation du liquide de rehydration par voie orale quand un membre adulte de la famille contracte une diarrhée.

Ces enseignements se feront aussi bien dans les centres de santé et les PMI et aussi par de larges campagnes audiovisuelles et radiophoniques.

- **Rupture du cycle diarrhée-malnutrition:**

Les connaissances nouvelles laissent penser que les jeunes enfants sousalimentés sont beaucoup plus enclins à la diarrhée que les enfants plus âgés et les adultes qui y sont tout aussi exposés. Ces enfants doivent développer une immunité contre de nombreux microbes courants à un âge de croissance rapide ou l'apport en nourriture est important. Si la quantité de micro-organismes est faible, ils peuvent y résister; si elle est importante ils peuvent contracter la diarrhée.
L'enfant mal nourri a un thymus atrophié et son immunité cellulaire est affaiblie. Son aptitude à acquérir une immunité spécifique contre plusieurs germes similaires semble être diminué.

 1. l'enseignement de la bonne pratique d'alimentation pendant et après la diarrhée améliore aussi le gain de poids et permet d’atténuer aussi les effets nuisibles de la diarrhée sur l'état nutritionnel permettant de franchir une étape importante vers l'interruption du cycle diarrhée-malnutrition chez le nourrisson, encourager l'allaitement maternel dont les vertues sont bien connues et dont l'Afrique a encore le privilège.

- Assainissement, l'approvisionnement en eau et hygiène alimentaire:

De récentes études ont montré que l'approvisionnement en eau de boisson saine n'était pas suffisant à lui seul pour éliminer les maladies diarrhéiques aiguës. En effet, on peut aussi contracter une diarrhée en utilisant l'eau polluée pour se baigner, faire la cuisine, laver les aliments, etc... Quand aux shigelloses et aux infections à certains types de virus, elles ne sont pas nécessairement véhiculées par l'eau.

 1. Il convient d'assurer en plus d'un approvisionnement en eau saine des moyens adéquats d'évacuation des déchets et aussi d'enseigner à la population de bonne pratique d'hygiène personnelle et d'hygiène alimentaire.

La prise de conscience des masses est le temps préalable obligatoire pour toute action efficace. Tout programme pour essayer d'améliorer les conditions de vie dans un pays ne peut se faire qu'avec la participation active de la population. Le seul moyen d'arriver à toucher l'ensemble des habitants c'est de les intégrer à la mise en pratique des mesures préconisées.

La difficulté est de mettre au point la technique et le matériel de cette action sanitaire. Ceci ne peut être fait que par les cadres et auxiliaires autochtones eux mêmes, qui connaissent très bien leur pays.
A l'issue de cette étude sur les deshydratations, au cours des diarrhées aigues infectieuses observées en Afrique Noire, on peut retenir: qu'elles demeurent l'un des plus grands fléaux sociaux avec un taux de mortalité de près de 40 % pour les enfants de bas-âge; bien que les statistiques soient encore mal établies dans la plupart de nos pays, ce qui voile malheureusement l'ampleur du problème.

Sur le plan de la recherche causale environ 70 % des syndromes diarrhéiques demeurent d'étiologie indéterminée, les coprocultures positives ne représentent qu'en moyenne 30 % de l'ensemble des coprocultures.

avec en tête les shigelles 15 % des malades intestinaux et 50 % des syndromes dysentériiformes. Puis les salmonelles, le choléra, E. Coli Proteus et les Providencia.

la responsabilité des enterovirus au cours des syndromes diarrhéiques semble encore indéterminée.

le rôle des parasites intestinaux en dépit de leur fréquence en Afrique Noire ne peut être affirmé qu'après élimination de toute autre cause microbienne et virale.

Mais le pronostic de ces deshydratations dépend moins des germes incriminés elle dépend surtout des pertes hydroélectrolytiques engendrées soit: par action des toxines sécrétées par ces germes, soit par envahissement des interocytes par ces germes.

Aussi dans l'état actuel de nos connaissances, il importe d'une part de diminuer la mortalité due à ces deshydratations - en enseignant la pratique de la rehydratation par voie buccale à domicile - en multipliant les unités de rehydratation (ou en les créant) en milieu rural et urbain et en les équipant de matériel adéquat et en personnel compétent.

- d'inciter les malades à s'y présenter le plus précocément possible.
D'autre part, de réduire le taux des infections intestinales:
- par une grande campagne d'information sur le péril fécal.
- d'enseigner à la population de bonnes pratiques d'hygiène personnelle
d'hygiène alimentaire et d'hygiène collective.

Il s'agit là d'un problème immense et complexe dans lequel interviennent en plus des inégalités sociales et économiques, des facteurs culturels et comportementaux profondément enracinés et bien que nul ne l'ignore, rares sont les efforts spécifiques déployés pour le résoudre.
BIBLIOGRAPHIE

1. AGUS S.G., DOLIN R., WYATT R.G., TOUNIS A.J., NORTOREP R.S.
 Acute infection non bacterial gastroenteritis: intestinal histopathology
 Arn Intern. Recl. 1973-79 -I8

2. ALBERT G., LE DAO G., RICOSSE J.H., MENARD J.H., ETIENNE J.
 Contribution à l'étude des shigelloses en Haute-Volta
 Med. tropical 1974 207-209

3. ALLEN J.E., GURAO V.J., RUSSO R.M.
 Practical points in pediatrics

4. ARMENGIO et COLL:
 L'amibiase aigue de l'Agricain en milieu hospitalier
 1962. 5 793.

5. BAKER J.A.
 Le filterable virus from pneumo enteritis of calves
 J. Bact 1942 43 86

6. BANWELL J.G., PIERCE N.F., MITRA R.C., BRIGHAM K/L., CRABNASAS G.J.,
 KEIMOWITZ R.I., FEDSON DS., GORBACH SLK, THOMAS J., SACK RB.,
 MONDAL A.
 Intestinal fluid an electrolyte transport in human cholera
 J. clin Invest. 1970 - 49.183-195
7. BARENGER L.H., GEVY M. and GRAND J.M.
An épidémic of infections diarrhoea in the new born Jama 1936-106-1256-1260

8. BARNES G.L., BISHOP R.F., JOWNLEY R.R.W.

9. BARNES G.L., TOWLEY R.R.W.
Duodenal mucosal domage in 31 infants with gastro-enteritis. Arch dis child 1973, 48,343

10. BAYLET R.J., BAN, MAFFRE et WONEI.

11. BAYLET R.J., DAUCHY S., MAFFRE E.

12. BAYLET R.J. et GRELLIER.
Infection de crèche par poliovirus. Bull. soc. Path. exot. 1962,55 N° 2 , 224
13 - BAYLET R.J. et LINAHARD J.
Entéro infection bactérienne. Notes épidémiologiques
Med. Af. Noire 1965
N° spécial 33-59

14 - BAYLET R.J. et LINAHARD J.
Entéro-infections virales études épidémiologiques
IVᵉ journées Médicales de Dakar. Janvier 1965

15 - BOCHE R. MILLAM J. et LE NOC P.
Poliomyélite au Cameroun.
Enquête virologique et serologique dans la population
infantile de Yaoundé
Revue Med. Soc. et santé Pub. 21
N° I janv. fev. 1973. 82

16 - BELCOURT J.R.
Salmonelles digestives à l'Ile Maurice
Med. afr. Noire 1975 22
(1) 727.729

17 - BOURDAIS A. LEBRIS H. BARNAUD P. BOUPFARD A. JAUD V. VINCENT R.
RICHARD A. COURBIL LJ.
L'état de choc au cours de l'amibiase
Lgue Franc. 1978. 23 . 71.82

18 - BORIES S.
Nouvelles contributions à l'étude des entéro-bactéries
pathogènes à Dakar.
Bull. soc. path. exot. 1964. 57. 190-194
19 - BORIES S. GUERINEAU P. et PLASSARD M.
A propos de 750 cas de gastroentérites microbiennes
IV journées médicales de Dakar. Janvier 1965

20 - BOURGEADE A. AVERGNAT J.CH. DUCHASSIN M. KADIO A.
Diarrhées aigues en Côte d'Ivoire. Place et aspects
cliniques des salmonalloses et des shigelloses
20, 3, 281-286

21 - BOURGEADE A. CLERC M. HEBRARD MA. HOSOTTE RT. DOBRES CU A.
ADOUX-ESSOH A.
Bilan ionique du plasma et des selles cholériques au
cours d'une épidémie à vibrio-cholera biotype EL TOR.

22 - BOURGEADE A. GUEMBY C.N. MBINA et KADIO
Rehydratation des diarrhées par voie orale

23 - BUMPT Mmes RUBINSTEINS et PIECHAUD J.
Contribution à l'étude shigella du centre OAF

24 - CANTERELLE
Mortalité de l'enfant en zone rurale au Sénégal:
condition de vie de l'enfant en milieu rural
CIE 1947

25 - CARPENTIER CCL
Cholera enterotoxin recent investigations field insights
into transport processes
Am. J. Med. 1971 50. 1-7
26 - CARPENTIER C.C.L.
cholera and other enterotoxin related diarrheal diseases
J. infect. dis. 1972. 126. 551-554

27 - CARPENTIER C.C.L. SACK R.B. FEELEY J.C. STEENBERG RW.
Site and characteristics of electrolyte loss and effect of enteral and glucose in experimental canine cholera
J. clin Invest. 1968. 47. 1210-1220

28 - CATHLIN C.

29 - CHATTERJEE A.

30 - CHEN LC. RHODE J.E. SHARP GMC
Intestinal adenyl-cyclase activity in human cholera Lancet 1971-I 939-941

31 - CROWLEY N. DOWNIE AW. FULTON F. and WILSON G.S.
Épidémie néonatale dicorrhoca in maternity hospital bacteriological aspect Lancet 1941. 2, 590
32 - CURAN PF.

solute-solvant interactions and water transport in
Bolis L. Keynes R. Wil BRANDT W
role of membrane in secretory processus amsterdam
I972. North Holland Publishing CO pp 408

33 - CURAN PF. SCHULTZ SG.

transport across membranes: general principles in:
DC I968
American physiology society sect
6 3 pp 1217

34 - DARASSE H.

Diversité des types de shigella rencontrés à Dakar

35 - DARASSE H. DUPLIN et CORREA P.

Role des Escherichia coli dans les gastroentérites
des nourrissons en pays tropical
Bull. Med. AF. I954. II. 225-247

36- DARASSE H. LE MINOR L. PIECHAUD D. et NICOLE P.

Les entérobactéries pathogènes à Dakar
Bull Soc Patho. extox. I957. 50. 257-28I

37- DUVILLE J.P. et PATTYN S.R.

Etude longitudinale des virus enteriques chez les enfants
d'une communauté congolaise à Elisabethville
Aun de soc Belge de Med. Trop. 740
6 , 1960, 879-892
38 - DESJEUX J.F.

Diarrhées aigues.
Nutrition et alimentation du nouveau-né. MONACO 3
22-23 Avril 1978. E II

39 - DESJEUX J.F. GRASSET E. LESTRADET H.

Physiopathologie des diarrhées aigues infectieuses.
Arch. Francaise de pédiatrie
36, I Janv. 1979 pp 69-79

40 - DESJEUX J.F. TAI Y.H. CURRAN PF.

Characteristics of sodium flux from serosa to mucosa in rabbit ehdum
J. Gen. Physiol 1974. 64. 274

41 - DESJEUX TAI Y.H. POWELL DW CURRAN P.

Effet de choléra toxin ou cellular and paracellular sodium fluxes in rabbit
itenum Biochim Biophy Acta
1976. 448-352

42 - DESJEUX J.F. JANNEBAU M.C. TAI Y.H. CURRAN PF.

effets of sugars and amino acide on sodium mouvements across small intestine Amer 5 Dischild
1977 I31.331

43 - LIN R. LEVY AG. WYATT RG. THORNHILL TS. GARDNER JD.

Viral gastroenteritis induced by the Hawaii agent
Amer 5. Mec. I975.

43 bis - DOURNON E.

Etude clinique et thérapeutique du choléra au Dahomey à partir de 133 observations
Bull. Soc. de Patho. Exot. I976
44 - DUCLOUX M. FLAUCON R.

Enteropathies à providencia observées en milieu africain

45 - ENDRES JF. WELLER TH. and ROBBINS

cultivation of the lansing strain of poliomyelitis virus
in culture of various human embruonic tissues sciences
1949. 109.85.89

46 - EVANS D. G. SILVER RP. EVAN J. CHASE D.G. GORBACH SL.

Plasmid. controlled colonization factor associated with
virulence in escherichia coli enterotoxigenic for humans
Infect. Im. 1975.12. 656

47 - FARRIS RK. TAPPER EJ. POWELL DW. RORRIS SM.

effect of aspirin ou normal and cholera toxin stimulea
ted intestinal electrolyte transport

48 - FIELD. M.

New strategies for treating watery diarrhea

49 - FIELD. M. FRORR. D. AL. AWGATI G. GREENOUGH WB.

effect of cholera enterotoxin on ion transport
across iléal mucosa
J. chir. invest. 1972. 51.796.804
50 - FIELD M. Mc COLL T.

51 - FIELD M. PLOTKIN GR. SILEN W.
Affect of vasopressin theophylline and cyclic adenosine monophosphate on short circuit current across isolated rabbit ileal mucosa nature 1968. 217, 469,471.

52 - FIELD M. SHEERIN HE. HENDERSON A. SMITH PL.
catecholamine effects ou cyclic AMP Levels and ion secretion in rabbit ileal mucosa Amer J. Physiol. 1975. 229,86

53 - FIELD M. SHERWOOD LM. PARRISEE

54 - FINKELSTEIN RA. FUJUTA K. LOSPALLUTO JI.

55 - FINKELSTEIN RA. LARVE MK. LOSPALLUTO JI.
prospecties of the cholera exo-enterotoxine effets of dispersing agents and reducing agents in gel filtration and electrophenesis. Infect Immunity 1972. 6. 934. 944
56 - FINKELSTEIN RA. LOSPALLUTO JJ.
pathogenesis of experimental cholera preparation and
isolation of choleragen and choleragenoid
J. exp. Med. 1969. 130. 185-202

57 - FINKELSTEIN RA. LOSPALLUTO JJ.
production of highly purified choleragen and choleragenoid.
J. Infect Dis 1970. 121 Supp. 63-72

58 - FINKELSTEIN RA. PETERSON JW in vitro
detection of antibody to cholera enterotoxin in cholera
patients and laboratory animals
Infect Immunity 1970. 1. 21. 29

58 bis - FORDTRAN J.S. INGELFINGER F.J.
Absorption of water electrolytes and sugars from the
human gut (In.C.F. Ed. Handbook of physiology Washington
3, pp. 1457)

59 - FORMAL SB. GEMSKI P. Jr GIANNELLA RA. TAKEUCHI A.
studies on the pathogenesis of enteri infections caused
by invasive bacteria. in acute diarrhea in childhood
ciba Foundation symposium 42. Amsterdam
1976. ELSEVIER pp 27-43

60 - FRIZZEL RA. SHULTZ SG.
Ionic conductance of the extracellular shunt pathway in
rabbit ileum influence of shunt on transmural sodium
transport and electrical potential differences
J. Gen. physiol. 1972. 59-318
61 - GIANNELLA A. FORMAL SB. DAMMIN GS. COLLINS H.

62 - GLYN R. JONES
Gastroenteritis with severe complications the central african Journal of Medecine 16. J. May 1970

63 - GORBACH SL.
Intestinal microflora in asiatic cholera J. infect dis 1970. 121. 32.45

64- HRADY FG. and KENSCH GT.

65 -GRASSET E. HEYDAN M. DUMONTIER AM. DESJEUX JF.
possible sodium and d. glucose cotransport in isolast jejunol epithelium of cholera (soumis pour publication)

66 - GREISMAN SE. HORNICK RB. WOOD WARD TE.
the role of endotoxin during thyphoid fever and hull aremia in man III hyperachvity to endotoxin during infection J. clin Invest. 1964. 43. 1747. 1757

67 - GRENIER B.
Deshydratation par diarrhée aigue chez l'enfant : bases physiologiques et conduite de la rehydratation parenterale An. de pédiatrie 1979. 26. 1 31-37
68 - GRENIER B.
Le traitement oral symptomatique des diarrhées aigues des nourrissons
Gas. med. fr. 82-17
2087-2099

69 - GUARD O. DELPY P. RIROL
Les infections à salmonelles au Tchad à propos de 152 cas observés à l'hôpital de Fort Lamy 1970
Med. trop. 1973, 33, pp 57-65

70 - HAMILTON JR. GALL DG. KERZNER B. BUTLER DG. MIDDLETON PJ
récent développements in viral gastroenteritis pediat clinics North america
1975, 22. 747

71 - HENDRIX TR.
the pathophysiology of cholera
BullNew Yord accad. Med. 1971 47. 1169-1180

72 - HOCHSTEIN JD. FEEY JC. RICHARDSON SH.
titration of cholera antitoxin levels by passive hemagghitination tests using fresh and formalinized sheep erythocytes

73 - HORNICK RB. GREISMAN SE. WOODWARD TF. DUPONT HL. DAWKINS AJ. SNYDER M.J.
typhoid fever pathogenesis and immunologic central New engl.
74 - HUAULT G. LABRUNE B. et COLL
Pediatrie d'urgence Paris
Flammarion Médecine science 1977

75 - HUEBNER JR.
virus in search of disease
Ann New York acad sci 1957
67. 209-446

76 - JOSSERAND J. PATAcq. CROUTZET G. GILGUY SAGNET Y. MAFART
Aspects de la fièvre thyphoide de l'adulte africain
à Oungadougou

76 bis: Journées de ranimation de Nancy 1964
Diarrhées sévères de l'adulte

77 - KAO VCY. SRINGZ H. BURROUWS W.
experimental cholera: immohis kochimical
Observations ou the localization of toxin in the
intestinal mucosa
Gastroenterrology 70. 58.965

78 - KAROLcer J.
Problemes of antityphoid immutty and protective vaccination
against thyphoid I Vol.
Le karske prace Ed; Bradislata 1969

79 - KASHMVA L. VIEG JI. VADEPITTE J. ISEBAERT C.
Les shigella et les salmonelles dans la région de KIVU
au ZAIRE.
80 - KERZNER B. KELLY MH. GALL DG. BUTLER DG. HAMILTON JR.
transmissible gastroenteritis. Sodium transport and the
intestinal epithelium during the course of viral
enteritis gastroenterology 1977. 72. 457

81 - KEUSCH GT. GRADY GH. MATA LJ. MOIVER J.
the pathogenesis of shigellia diarrhea anterotoxine
production by shigella olysenterial
I J. clin Invest. 1972. 51.1212

82 - KIRSCHE D. BAYLET RJ.
salmonelles à Dakar
Med. afr. N° Special 7 aout 1960

83 - KYEMLEM JM.
problème étiologique des diarrhées infectieuses à Dakar
Place des colibacilles pathogènes
Thèse Dakar 1967. 6. 88-89

84 - LABEGORRE J. THEVENEAV J. TORRE MR. CHIZET E. DESPRUNIEE P. CHOPART.
Aspects particuliers des septicémies salmonelliennes au
Gabon.
Role prédominant du salmonelle typhinerium

85 - LAPAIX CH. CAMERLYNCK P. REY M.
Endemie dakaroise et épidémie hospitalière à souches
polyresistantes de salmonelles stanleyville
mise en évidence extra chromisonique transférable à E.
coli K12
Bull. soc. med. afr. Nre Lgue Frse 2. 1968
86 - LE NOC P. BONHARDOT R. SALVAT J. STUBLIER R.

A propos de 196 souches de salmonelles isolées et étudiées depuis janvier 1964 au centre national de Salmonella-shigella du Sénégal:
IV° journée médicale de Dakar Janvier 1965

87 - LE NOC P. et CAUSSE G.

88 - LE NOC P. et ORIO J.

Les infections à Salmonella en cote d'Ivoire étude microbiologique et épidemiologique
27.40 Revue epidemiom Med. soc. et sant. Publ. 1972 20, 1

89 - LESTRADET H. COURPOTTIN G.

La deshydratation grave du nourrison
Etude biologique et application thérapeutique
Journées parisiennes de pédiatrie 1973. Flammarion Médecine Science

90 - LIGHT JS. and HODES HL.

Studies on epidemic diarrhoea in the now horn isolation of a filtrable agents causing diarrhoea in calves
Amer S. Public Health 1943. 33. 14 551

91 - LOSPALLUTO JP. FINKELSTEIN RA.

Chimical and physical properties of cholera exo-enterotoxine (choleragen) and its spontancousey formed texoid (choleragenoid)
Biochem Biophys. acta 1972. 257. 158-166
92 - LYON GR and FORSON TG.
epidemic diarrhoea of the new born . Amer J. dis. child
1949. 61. 427-444

93 - MAHALANABIS D. et al:
oral fluid therapy of cholera among bangla deshr refugees
hohns hopkins med J. 1973
192. 197. 205

94 - MAKULU A. GATTI F. VANDERPITTE J.
Edwardiella tarda infections in ZAIRE
Anu. soc. belge Med. trop.
1973. 53. 3. 165. 172

95 - MAMADOU S.
Les effets sanitaires de la sècheresse au Niger
Thèse Montpellier mars 1979

96 - MASSOUGBODJI née d'ALMEIDA
Apects cliniques et épidémioiogiques des
salmonelloses et des shigelloses en Afrique Noire
thèse 1977. 995008. 333 Montpellerier

97 - MORLEY D.
Pediatric in les pays en developpement.
Problèmes prioritaires
Ed. flammarion Médecine Science.
98 - MORLEY D. KING M.
Spoons for making sal. solution Laucet 1978

99 - MALIN DR. CASH AR. RAHMAN.
oral (or nasogastric) maintenance therapy for cholera patients in all age-groups
bull who 1970. 43. 361.363

100 - OMANGA J. NSURU. DISSEN. GOMOLA B. TADYE NKIDIAKA
Etude de 242 cas de diarrhées aigues de l'enfant à Kinshasa
Ann. soc. belge Med. trop. 1973
53 (2) B. 77.87

101 - OMS:
Guide pour la lutte contre le cholera
BD cholera 75-28

102 - OMS:
Lutte contre le cholera et les autres maladies diarrhéiques aigues. BAC / DDC/ 76

103 - OMS:
surveillance des maladies diarrhéiques y compris le cholera

104 - OMS:
Traitement du cholera et des autres diarrhées aigues chez l'adulte et l'enfant.
BD. Cholera 74-27
I05 - OMS:

traitement et prévention de la deshydratation dans les maladies à diarrhée: guide pratique élémentaire
OMS GENEVE 1976. 32 pages

I06 - OUSSA Germain:

considerations epidemiologiques sur les diarrhées infectieuses dans les pays en voie de développement thèse présentée à Montpellier 1974 N° 15

I07 - PAYET M. NETIK J. ARMENGAUD M. BEZES H.

Les amibiases coliques mortelles en milieu africain à Dakar.
Bull. med. AOF. 1957. 2, 384-392

I08- PAYET M. SANKALE M. FROMENT V.

amibiase colique maligne: Med. afr. Nre 1 Janv. 1969

I09- PAYET M. SANKALE M. FROMENT V.

aspects cliniques de l'amibiase chez l'adulte africain en milieu hospitalier à Dakar
Bull. mem. fac. pharma. Dakar 1964. 12, 4-10

I10- PAYET M. SANKALE M. PENE P. ELIE JC.

Amibiase colique maligne en milieu africain
Arch. mal. de l'app. digestif
1961. 50, 140-154
III- PAYET M. SANKALE M. PENE P. LINHARD J. MOULANIER Melle BEAUDOUIN MT
Fréquence et aspects cliniques des shigelloses endémiques de l'adulte chez le noir africain

II2 - PETERSON W. LOSPALLUTO JJ. FINKELSTEIN RA.
localisation of cholera toxin in vivo
J. Infect Dis 1972, 6, 617.628

II3 - PHILLIPS SF.
diarrhea a current view of the pathophysiology
Gastroenterology 1972 63, 495

II4 - PIECHAUD D. SZTURM-RUBINSTEN S.
répartition des bacilles dysenteriques étudiés au centre national de shigella.
Bull. de la société de pathologie exotique 1964, 3 411

II5 - PIERCE NF:
differentiel inhibihry effects of cholera toxoids ang
ganglioside ou the enterotoxins of vibrio cholera and
escherichia coli
J. exp. med. 1973. 137, 1009-1023

II6 - PIERCE NF. HENNESSEY G. SACK GM. MITRA R.
gastric acidihy in cholera . ann. clin. des. 1971
19, 400
117 - PIERCE NF. HIRCHHORN N.
rehydratation par voie buccale un moyen simple de
combattre la diarrhée chronique OMS 1977. 31, 84-98

118 - PIERCE NF. GREENOOGH WB. CARPENTIER CCI
vibrio cholerae enterotoxin and its mode of action

119 - QUENUR C. NDIAYE PD. BAYO S.
Etude de 92 cas d'amibiase colique maligne
Bull. Soc. Med. d'af. noire Ligue Frse
1975. 20, 4. 367-374

120 - RAVISSE P. SAGNET H. CLERGEAUD P. DENE J.
Enterobacterie pathogène chez l'enfant à Brazzaville

121 - REILLY J. RIVALIERE . COMPAGNON A. LAPLANE R. DUBOIT H.
sur la pathologie de la dothienterie
La fièvre typhoide experimentale
An. Med. 1935. 37. 182

122 - REIMANN HA PRICE AH. HODGE J.S.
the cause of epidemic diarrhoea nausea and vomiting
(viral dysentery)
Proc. soc. exp. biol. and. med. 1945. 59, 8

123 - RICOSSE MH. ALBERT SP. PICQ JJ. DARRIGOL. LEFEVRE M.
Les enterobacteries pathogènes isolées par coproculture
à Bobo-Dioulasso notre préliminaire
Bull. path. exot. 1966
I24 - ROUTWR. FORMAL S.B. DARMING J. GIANNELAR A.
pathophysiology of salmonella diarrhea in the resus
tonkey intestinal transport morphological and bacte­
riological studies
Gastroenterology 1974 67, 59-70

I25 - SACK RB. CARPENTER CCJ.
experimental canine cholera II
Production bi cell free culture filtrases of vibrio
cholera
J. Infect Dis 1969. 119 150-157

I26 - SANKALE M. (Dakar)
traitement d'urgence des diarrhées infantiles dans
les climats soudaniens

I27 - SANKALE M. BAYLET RJ.
Les affections intestinales d'origine bactérienne et
virale en Afrique de l'Ouest

I28 - SANKALE M. BAYLET RJ.
Importance du peril fecal en Afrique noire
269-277

I29 - SANKALE M. DIOP B. FRAMENT V.
Contribution à l'étude de la place des affections
parasitaires dans un service hospitalier de médecine
générale à Dakar
I29 bis - SCHMITZ J. PREIZER H. MAESTRACCI D. CRANE R.K.

I30 - SCHREIBER DS. BLACKLOW NR. TRIER JJ.
The normal lesion of the proximal small intestine in acute infections non bacterial gastroenteritis

I31- SCHREIBER DS. BLACKLOW NR. TRIER JJ.
Small intestinal lesion indual by Hwai agent acuse infections non bacterial gastroenteritis
J. infect DIS 1974-I29, 705

I32- SCHREIBER DS. BLACKLOW NR TRIER JJ
Recent advances in viral gastroenteritis gastroenterology 1977. 73. 174

I33 - SENEGAL J. AGBESSY V. DAN V. (Dakar)
Traitement des diarrhées et pratique de la rehydratation en zone tropicale

I33 bis - SENECAL
Les diarrhées infectieuses en Afrique
Bull. OMS 1959. 31. 321-336

I34 - SERIE C. Mme PECHAUD D. SZTURM-RUBINSTEINS
Bacilles dysenteriques isolés à Addis Abeba
Bull soc. path. exot. 1956 49. 1098
135 - TAI Y.H. DESJEUX JF. DANISI G. CURRAN PF.
no and cl transport and short circuit current in rabbit ileum
J. membrane Biol. 1977. 31, 189

136 - TAYLOR J.
discussion on infantile gastroenteritis
Proc. Roy soc. med. 1951. 44, 516

137 - THOMAS J. JOSSEYANG C. ANDRE LJ
physiopathologie de la diarrhée du cholera
Arch. Frse Mal Dig. 1974. 63, 327,341

138 - VAN HEYNINGEN WE. CARPENTER CV. PIERCE NF. GREENOUGH WB.
deactivation of cholera toxin by ganglioside J. infect DIS 1971. 124, 415,418

139 - VAN ROS G.
contribution à la connaissance des enterobacteries du groupe providencia basée sur l'étude de 200 souches isolées au Kivu.
Académie royale des sciences d'Outre Mer Nov. 1960. 12 fasc. 4

140 - VANDEPITTE J.
Endemicité des virus enteriques à Leopolville
Bill. who 1960. 22, 313,318

141 - VAUGHAN. WILLIAMS EM. DOHADWALLA AN. DUTTA NK.
diarrhea and accumulation of intestinal fluid in infant rabbits infected with vibrio cholerae in a isolated jejunal segment
J. infect DIS 1969- 120, 645.651
I42 - VAUGHAN VILLIAMS ER. DOHADWALLA AN.
the appearance of a choleragenic agent in the blood of infant rabbits infected intestinally with vibrio cholerae demonstrated by cross-circulation
J. Infect DIS 1969. 120. 658-663

I43 - VILDE JL LAGRANGE P. KOSKA E. BASTIN R.
Physiopathologie des infections à Salmonelles
Medecine et maladies infectieuses 1978
6, 295, 303.
Table des Matières

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>8</td>
</tr>
<tr>
<td>QUELQUES DONNEES STATISTIQUES DE MORTALITES</td>
<td>8</td>
</tr>
<tr>
<td>PAR DESHYDRATATION</td>
<td></td>
</tr>
<tr>
<td>RESPONSABILITE DES DIFFERENTS GERMES ISOLES</td>
<td>14</td>
</tr>
<tr>
<td>PHYSIOPATHOLOGIE</td>
<td>45</td>
</tr>
<tr>
<td>DESCRIPTION CLINIQUE</td>
<td>65</td>
</tr>
<tr>
<td>EXAMENS BIOLOGIQUES</td>
<td>75</td>
</tr>
<tr>
<td>EVOLUTION</td>
<td>77</td>
</tr>
<tr>
<td>TRAITEMENT DES DESHYDRATATIONS</td>
<td>79</td>
</tr>
<tr>
<td>PREVENTION DES DESHYDRATATIONS CAUSEES PAR</td>
<td></td>
</tr>
<tr>
<td>LES DIARRHEES INFECTIEUSES</td>
<td>113</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>116</td>
</tr>
<tr>
<td>BIBLIOGRAPHIE</td>
<td>118</td>
</tr>
</tbody>
</table>
ERRATA

pages 9 lire gastroduodénite au lieu de gastroduodénite
14 lire endémie " " " eudémie
14 lire O M S " " " O R S
17 lire MURAZ " " " RAMVZ
31 lire en effet " " " en effet
47 lire intracellulaire " " " ultracellulaire
48 lire Zonula occludens " " " Zomula occludens
51 lire Galactose " " " Galabose
55 lire électrophorèse " " " électrophorèse
60 lire adénylcyclase " " " adénylcyclase
62 lire cellule " " " cellules
63 lire adénylcyclase " " " adénylcyclase
70 lire orthostatique " " " orthostatique
71 lire LORENTZ " " " KOREUZT
73 lire collapsus " " " collapsus
82 lire le prix " " " la prise
86 lire NaHCO₃ " " " NaHCO₃
90 lire lit " " " lis
99 lire 3 g de NaCl/l et 1 g de gluconate de Ca " " " 38 g de NaCl/l8 de gluconate de Ca
102 lire glycosurie " " " glycosie
104 lire sulfaméthoxazole " " " sulfaméthoxazole
105 lire de soins " " " le moins
108 lire natriémie " " " natriémie
112 lire hypernatrémie " " " hypernatrémie
112 lire hypovolémie " " " hypovolémie
une paralysie " " " paralytique
122 lire Lancet " " " Lancet
123 lire ANN " " " AUN
124 lire glucose " " " gluxes
130 lire Ouagadougou " " " Oungadougou
133 lire ANN " " " ANU
SERMENT

En présence des Maîtres de cette Ecole, de mes chers condisciples et devant l'effigie d'Hippocrate, je promets et je jure, au nom de l'Être suprême, d'être fidèle aux lois de l'honneur et de la probité dans l'exercice de la médecine.

Je donnerai mes soins gratuits à l'indigent et n'exigerai jamais un salaire au-dessus de mon travail. Admis dans l'intérieur des maisons, mes yeux ne verront pas ce qui s'y passe ; ma langue taira les secrets qui me seront confiés, et mon état ne servira pas à corrompre les moeurs ni à favoriser le crime. Respectueux et reconnaissant envers mes Maîtres, je rendrai à leurs enfants l'instruction que j'ai reçue de leurs pères.

Que les hommes m'accordent leur estime si je suis fidèle à mes promesses. Que je sois couvert d'opprobre et méprisé de mes confrères si j'y manque.
En ma qualité de censeur de tour
j'ai lu la thèse ayant pour titre:

Les Deshydratations au cours des diarrhées aiguës infectieuses observées en Afrique Noire.

Je pense que la Faculté peut en permettre l'impression.

Montpellier, le 23 mai 1979
Le Professeur A. BERTRAND

VU ET PERMIS D'IMPRIMER

Montpellier, le juin 1979
Le Doyen,

P. RABISCHONG

La Faculté de Médecine de MONTPELLIER déclare que les opinions émises dans les dissertations qui lui sont présentées doivent être considérées comme propres à leur auteur; qu'elle n'entend leur donner ni approbation, ni improbation.